Solveeit Logo

Question

Question: If ƒ(x) = \(\frac{1}{4}f(x) = \left\{ \begin{aligned} & \begin{matrix} x\sin\frac{1}{x}, & x \neq 0...

If ƒ(x) = 14f(x)={xsin1x,x00,x=0 \frac{1}{4}f(x) = \left\{ \begin{aligned} & \begin{matrix} x\sin\frac{1}{x}, & x \neq 0 \end{matrix} \\ & \begin{matrix} 0, & x = 0 \end{matrix} \end{aligned} \right.\ for x ∈R, then ƒ(x) is

continuous in –

A

(–∞, ∞)

B

(–∞, ∞) – limx0f(x)\lim_{x \rightarrow 0}f(x)

C

(–∞, ∞) – f(x)={sin[x][x],[x]00,[x]=0 f(x) = \left\{ \begin{aligned} & \begin{matrix} \frac{\sin\lbrack x\rbrack}{\lbrack x\rbrack}, & \lbrack x\rbrack \neq 0 \end{matrix} \\ & \begin{matrix} 0, & \lbrack x\rbrack = 0 \end{matrix} \end{aligned} \right.\

D

None of these

Answer

(–∞, ∞) – limx0f(x)\lim_{x \rightarrow 0}f(x)

Explanation

Solution

If |2 sin x| < 1, ƒ(x)

= limn\lim _ { n \rightarrow \infty } x(2sinx)2n+1\frac { x } { ( 2 \sin x ) ^ { 2 n } + 1 } = x0+1\frac { \mathrm { x } } { 0 + 1 } = x.

If | 2 sin x | = 1, ƒ(x) = limn\lim _ { n \rightarrow \infty } x(2sinx)2n+1\frac { x } { ( 2 \sin x ) ^ { 2 n } + 1 } = x1+1\frac { \mathrm { x } } { 1 + 1 } = 12\frac { 1 } { 2 }x..

If | 2 sin x | > 1, ƒ(x) = limn\lim _ { n \rightarrow \infty } x(2sinx)2n+1\frac { x } { ( 2 \sin x ) ^ { 2 n } + 1 }

= x+1\frac { x } { \infty + 1 } = 0.

Also, | 2 sin x | < 1, ⇒ | sin x | < 12\frac { 1 } { 2 }

12\frac { - 1 } { 2 } < sin x < 12\frac { 1 } { 2 } ⇒ nπ – π6\frac { \pi } { 6 } < x < nπ +π6\frac { \pi } { 6 },

| 2 sin x | = 1 ⇒ | sin x | = 12\frac { 1 } { 2 }

⇒ sin x = ±12\frac { 1 } { 2 } ⇒ x = nπ ± π6\frac { \pi } { 6 }.

and |2 sin x| > 1⇒ | sin x | > 12\frac { 1 } { 2 }

⇒ sin x > 12\frac { 1 } { 2 } or sin x < 12\frac { - 1 } { 2 }

⇒ x = nπ ± π6\frac { \pi } { 6 }.

Thus, we have

ƒ(x) = The only doubtful points are x = nπ ± π6\frac { \pi } { 6 }.

Clearly, ƒ(x) is not continuous at x = nπ ±π6\frac { \pi } { 6 }.

∴ ƒ(x) is continuous in (–∞, ∞)

{xx=nπ±π6,nI}\left\{ \mathrm { x } \left\lvert \, \mathrm { x } = \mathrm { n } \pi \pm \frac { \pi } { 6 } \right. , \mathrm { n } \in \mathrm { I } \right\}