Question
Question: If (x) = \(\frac{1}{4}f(x) = \left\{ \begin{aligned} & \begin{matrix} x\sin\frac{1}{x}, & x \neq 0...
If (x) = 41f(x)={xsinx1,x=00,x=0 for x ∈R, then (x) is
continuous in –
(–∞, ∞)
(–∞, ∞) – limx→0f(x)
(–∞, ∞) – f(x)=⎩⎨⎧[x]sin[x],[x]=00,[x]=0
None of these
(–∞, ∞) – limx→0f(x)
Solution
If |2 sin x| < 1, (x)
= limn→∞ (2sinx)2n+1x = 0+1x = x.
If | 2 sin x | = 1, (x) = limn→∞ (2sinx)2n+1x = 1+1x = 21x..
If | 2 sin x | > 1, (x) = limn→∞ (2sinx)2n+1x
= ∞+1x = 0.
Also, | 2 sin x | < 1, ⇒ | sin x | < 21
⇒ 2−1 < sin x < 21 ⇒ nπ – 6π < x < nπ +6π,
| 2 sin x | = 1 ⇒ | sin x | = 21
⇒ sin x = ±21 ⇒ x = nπ ± 6π.
and |2 sin x| > 1⇒ | sin x | > 21
⇒ sin x > 21 or sin x < 2−1
⇒ x = nπ ± 6π.
Thus, we have
(x) = The only doubtful points are x = nπ ± 6π.
Clearly, (x) is not continuous at x = nπ ±6π.
∴ (x) is continuous in (–∞, ∞)
– {xx=nπ±6π,n∈I}