Solveeit Logo

Question

Question: If \(x = \frac{1 - t^{2}}{1 + t^{2}}\)and \(y = \frac{2t}{1 + t^{2}}\), then \(\frac{dy}{dx} =\)...

If x=1t21+t2x = \frac{1 - t^{2}}{1 + t^{2}}and y=2t1+t2y = \frac{2t}{1 + t^{2}}, then dydx=\frac{dy}{dx} =

A

yx\frac{- y}{x}

B

yx\frac{y}{x}

C

xy\frac{- x}{y}

D

xy\frac{x}{y}

Answer

xy\frac{- x}{y}

Explanation

Solution

x=1t21+t2x = \frac{1 - t^{2}}{1 + t^{2}} and y=2t1+t2y = \frac{2t}{1 + t^{2}}

Put t=tanθt = \tan\theta in both the equations, we get

x=1tan2θ1+tan2θ=cos2θx = \frac{1 - \tan^{2}\theta}{1 + \tan^{2}\theta} = \cos 2\theta and y=2tanθ1+tan2θ=sin2θy = \frac{2\tan\theta}{1 + \tan^{2}\theta} = \sin 2\theta.

Differentiating both the equations, we get dxdθ=2sin2θ\frac{dx}{d\theta} = - 2\sin 2\theta and dydθ=2cos2θ.\frac{dy}{d\theta} = 2\cos 2\theta.

Therefore dydx=cos2θsin2θ=xy\frac{dy}{dx} = - \frac{\cos 2\theta}{\sin 2\theta} = - \frac{x}{y}.