Question
Question: If \(x = \frac{1 - t^{2}}{1 + t^{2}}\)and \(y = \frac{2t}{1 + t^{2}}\), then \(\frac{dy}{dx} =\)...
If x=1+t21−t2and y=1+t22t, then dxdy=
A
x−y
B
xy
C
y−x
D
yx
Answer
y−x
Explanation
Solution
x=1+t21−t2 and y=1+t22t
Put t=tanθ in both the equations, we get
x=1+tan2θ1−tan2θ=cos2θ and y=1+tan2θ2tanθ=sin2θ.
Differentiating both the equations, we get dθdx=−2sin2θ and dθdy=2cos2θ.
Therefore dxdy=−sin2θcos2θ=−yx.