Question
Mathematics Question on Differential equations
If xdxdy=y(logy−logx) then the solution of the equation is
A
log(yx)=cy
B
log(xy)=cx
C
xlog(xy)=cy
D
ylog(yx)=cx
Answer
log(xy)=cx
Explanation
Solution
xdxdy=y(logy−logx+1) ⇒dxdy=xy(logxy+1). Put xy=z ∴dxdy=xdxdz+z ∴z+xdxdz=z(logz+1) ⇒xdxdzzlogz ⇒zlogzdz=xdy ⇒log(logz)=logx+logC ⇒logz=Cx ⇒log(xy)=Cx