Solveeit Logo

Question

Mathematics Question on Differential equations

If xdydx=y(logylogx)x \frac{dy}{dx} =y \left(\log \,y - \log \,x\right) then the solution of the equation is

A

log(xy)=cy\log (\frac {x} {y}) =cy

B

log(yx)=cx\log (\frac {y} {x}) =cx

C

xlog(yx)=cyx \log (\frac {y} {x}) =cy

D

ylog(xy)=cxy \log (\frac {x} {y}) =cx

Answer

log(yx)=cx\log (\frac {y} {x}) =cx

Explanation

Solution

xdydx=y(logylogx+1)x \frac{dy}{dx} =y \left(\log \,y - \log \,x+1\right) dydx=yx(logyx+1)\Rightarrow \frac{dy}{dx} = \frac{y}{x}\left(log \frac{y}{x}+1\right). Put yx=z\frac{y}{x} = z dydx=xdzdx+z\therefore \frac{dy}{dx}=x\frac{dz}{dx}+z z+xdzdx=z(logz+1)\therefore z+x \frac{dz}{dx}= z\left(log\,z+1\right) xdzdxzlogz\Rightarrow x \frac{dz}{dx} \,z\,log\,z dzzlogz=dyx\Rightarrow \frac{dz}{z\,log\,z} = \frac{dy}{x} log(logz)=logx+logC\Rightarrow log \,\left(log \,z\right) = log \,x + log\, C logz=Cx\Rightarrow log \,z = Cx log(yx)=Cx\Rightarrow log \left(\frac{y}{x}\right) = Cx