Solveeit Logo

Question

Mathematics Question on Series

If x=310+3.710.15+3.7.910.15.20+x = \frac{3}{10} + \frac{3.7}{10.15} + \frac{3.7.9}{10.15.20} + ...., then 5x+85x + 8 =

A

5533\frac{5\sqrt{5}}{3\sqrt{3}}

B

553\frac{5\sqrt{5}}{\sqrt{3}}

C

335\frac{3\sqrt{3}}{\sqrt{5}}

D

25533\frac{25\sqrt{5}}{3\sqrt{3}}

Answer

25533\frac{25\sqrt{5}}{3\sqrt{3}}

Explanation

Solution

Given,
x=310+371015+379101520+x=\frac{3}{10}+\frac{3 \cdot 7}{10 \cdot 15}+\frac{3 \cdot 7 \cdot 9}{10 \cdot 15 \cdot 20}+\ldots
x=35510+35751015+35795101520+x=\frac{3 \cdot 5}{5 \cdot 10}+\frac{3 \cdot 5 \cdot 7}{5 \cdot 10 \cdot 15}+\frac{3 \cdot 5 \cdot 7 \cdot 9}{5 \cdot 10 \cdot 15 \cdot 20}+\ldots
Tr+1=357(2r+1)5r123r\therefore T_{r+1}=\frac{3 \cdot 5 \cdot 7 \ldots(2 r+1)}{5^{r} \cdot 1 \cdot 2 \cdot 3 \ldots r}
=(25)r3/25/272(r+12)r!=\left(\frac{2}{5}\right)^{r} \frac{3 / 2 \cdot 5 / 2 \cdot \frac{7}{2} \ldots\left(r+\frac{1}{2}\right)}{r !}
=(32)(321)(322)(32r+1)(25)rr!=\frac{\left(-\frac{3}{2}\right)\left(-\frac{3}{2}-1\right)\left(-\frac{3}{2}-2\right) \ldots\left(-\frac{3}{2}-r+1\right)\left(-\frac{2}{5}\right)^{r}}{r !}
Comparing with general term of (1+x)n,nR(1+x)^{n}, n \in R
n(n1)(n2)(nr+1)xrr!\therefore \frac{n(n-1)(n-2) \ldots(n-r+1) x^{r}}{r !}
=(32)(321)(32r+1)(25)rr!=\frac{\left(-\frac{3}{2}\right)\left(-\frac{3}{2}-1\right) \ldots\left(-\frac{3}{2}-r+1\right)\left(-\frac{2}{5}\right)^{r}}{r !}
n=32x=25\Rightarrow n=-\frac{3}{2'} x=-\frac{2}{5}
x+85=(125)3/2\therefore x+\frac{8}{5}=\left(1-\frac{2}{5}\right)^{-3 / 2}
=(35)3/2=(53)3/2=\left(\frac{3}{5}\right)^{-3 / 2}=\left(\frac{5}{3}\right)^{3 / 2}
=5533=\frac{5 \sqrt{5}}{3 \sqrt{3}}
5x+85=5533\Rightarrow \frac{5 x+8}{5}=\frac{5 \sqrt{5}}{3 \sqrt{3}}
5x+8=25533\Rightarrow 5 x+8=\frac{25 \sqrt{5}}{3 \sqrt{3}}