Question
Mathematics Question on Continuity and differentiability
If x=1+t1−t;y=1+t2t, then dx2d2y=
A
(1+t)22t
B
(1+t)41
C
(1+t)22t2
D
0
Answer
0
Explanation
Solution
x=1+t1−t,y=1+t2t
dtdx=(1+t)2(1+t)(−1)−(1−t).1=(1+t)2−2
dtdy=(1+t)2(1+t)2−2t.1=(1+t)22+2t−2t=(1+t)22
dxdy=dtdy.dxdt=((1+t)22)(−2(1+t)2)=−1
∴dx2d2y=dxd(−1)=0