Solveeit Logo

Question

Question: If \(X\) follows binomial distribution with parameters \(n = 100\) and \(p = \dfrac{1}{3}\), then \(...

If XX follows binomial distribution with parameters n=100n = 100 and p=13p = \dfrac{1}{3}, then P(X=r)P(X = r) is maximum when r = \\_\\_\\_\\_\\_\\_.

Explanation

Solution

Here we can use the formula of binomial distribution. Then compare the expression with terms in the binomial expansion of (a+b)n{(a + b)^n}. Then we can check for which value of rr is that P(X=r)P(X = r) will be maximum.

Formula used:
Binomial distribution is given by P(X=r)=nCrprqnrP(X = r) = {}^n{C_r}{p^r}{q^{n - r}}.
Here pp denotes the probability of success, qq denotes the probability of failure and q=1pq = 1 - p.
And CC represents the combination and nCr=n!(nr)!r!{}^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}.
The binomial theorem states that, where nn is a positive integer;
(a+b)n=an+nC1an1b+nC2an2b2+...+nCn1abn1+bn{(a + b)^n} = a{}^n + {}^n{C_1}{a^{n - 1}}b + {}^n{C_2}{a^{n - 2}}{b^2} + ... + {}^n{C_{n - 1}}a{b^{n - 1}} + {b^n}

Complete step-by-step answer:
Given that XX follows binomial distribution with parameters n=100n = 100 and p=13p = \dfrac{1}{3}.
Binomial distribution is given by P(X=r)=nCrprqnrP(X = r) = {}^n{C_r}{p^r}{q^{n - r}}.
Here pp denotes the probability of success, qq denotes the probability of failure and q=1pq = 1 - p.
So we get q=1p=113=23q = 1 - p = 1 - \dfrac{1}{3} = \dfrac{2}{3}.
P(X=r)=nCrprqnr=100Cr(13)r(23)100r(i)\Rightarrow P(X = r) = {}^n{C_r}{p^r}{q^{n - r}} = {}^{100}{C_r}{(\dfrac{1}{3})^r}{(\dfrac{2}{3})^{100 - r}} - - - - (i)
We need to find for which value of rr this expression will be maximum.
The binomial theorem states that, where nn is a positive integer;
(a+b)n=an+nC1an1b+nC2an2b2+...+nCn1abn1+bn{(a + b)^n} = a{}^n + {}^n{C_1}{a^{n - 1}}b + {}^n{C_2}{a^{n - 2}}{b^2} + ... + {}^n{C_{n - 1}}a{b^{n - 1}} + {b^n}
By observation we can see P(X=r)P(X = r) as the (r+1)th{(r + 1)^{th}} term in the expansion of (23+13)100{(\dfrac{2}{3} + \dfrac{1}{3})^{100}}.
So, we have to find rr such that (r+1)th{(r + 1)^{th}} term will be maximum in the binomial expansion.
If the (r+1)th{(r + 1)^{th}} term is maximum, we have Tr+1Tr1\dfrac{{{T_{r + 1}}}}{{{T_r}}} \geqslant 1, where Tr+1,Tr{T_{r + 1}},{T_r} represent (r+1)th,rth{(r + 1)^{th}},{r^{th}} terms respectively.
Consider the expansion of (1+x)n{(1 + x)^n}.
(1+x)n=1n+nC11n1x+nC21n2x2+...+nCn11×xn1+xn{(1 + x)^n} = 1{}^n + {}^n{C_1}{1^{n - 1}}x + {}^n{C_2}{1^{n - 2}}{x^2} + ... + {}^n{C_{n - 1}}1 \times {x^{n - 1}} + {x^n}
(1+x)n=1+nC1x+nC2x2+...+nCn1xn1+xn\Rightarrow {(1 + x)^n} = 1{}^{} + {}^n{C_1}x + {}^n{C_2}{x^2} + ... + {}^n{C_{n - 1}}{x^{n - 1}} + {x^n}
Here Tr=nCr1xr1,Tr+1=nCrxr{T_r} = {}^n{C_{r - 1}}{x^{r - 1}},{T_{r + 1}} = {}^n{C_r}{x^r}
So, Tr+1Tr=nCrxrnCr1xr1=nCrnCr1x\dfrac{{{T_{r + 1}}}}{{{T_r}}} = \dfrac{{{}^n{C_r}{x^r}}}{{{}^n{C_{r - 1}}{x^{r - 1}}}} = \dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}x
We have nCr=n!(nr)!r!{}^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}
Using this, Tr+1Tr=nCrnCr1x=n!(nr)!r!n!(nr+1)!(r1)!x\dfrac{{{T_{r + 1}}}}{{{T_r}}} = \dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}x = \dfrac{{\dfrac{{n!}}{{(n - r)!r!}}}}{{\dfrac{{n!}}{{(n - r + 1)!(r - 1)!}}}}x
Simplifying we get, Tr+1Tr=n!(nr)!r!n!(nr+1)!(r1)!x=(nr+1)(nr)!(r1)!(nr)!r(r1)!x\dfrac{{{T_{r + 1}}}}{{{T_r}}} = \dfrac{{\dfrac{{n!}}{{(n - r)!r!}}}}{{\dfrac{{n!}}{{(n - r + 1)!(r - 1)!}}}}x = \dfrac{{(n - r + 1)(n - r)!(r - 1)!}}{{(n - r)!r(r - 1)!}}x
Cancelling the common terms from numerator and denominator we get,
Tr+1Tr=nr+1rx\Rightarrow \dfrac{{{T_{r + 1}}}}{{{T_r}}} = \dfrac{{n - r + 1}}{r}x
Now consider (23+13)100{(\dfrac{2}{3} + \dfrac{1}{3})^{100}}. This can be rearranged as (23)100(1+12)100{(\dfrac{2}{3})^{100}}{(1 + \dfrac{1}{2})^{100}} by taking 23\dfrac{2}{3} common.
Here Tr+1Tr=nr+1rx=100r+1rx\dfrac{{{T_{r + 1}}}}{{{T_r}}} = \dfrac{{n - r + 1}}{r}x = \dfrac{{100 - r + 1}}{r}x
Also here x=12x = \dfrac{1}{2}.
So, we have Tr+1Tr=100r+1r×12\dfrac{{{T_{r + 1}}}}{{{T_r}}} = \dfrac{{100 - r + 1}}{r} \times \dfrac{1}{2}
We have seen Tr+1Tr1\dfrac{{{T_{r + 1}}}}{{{T_r}}} \geqslant 1.
Tr+1Tr=100r+12r1\Rightarrow \dfrac{{{T_{r + 1}}}}{{{T_r}}} = \dfrac{{100 - r + 1}}{{2r}} \geqslant 1
Cross multiplying we get, 100r+12r100 - r + 1 \geqslant 2r
Adding rr on both sides,
100+12r+r\Rightarrow 100 + 1 \geqslant 2r + r
Simplifying we get,
1013r\Rightarrow 101 \geqslant 3r
Dividing both sides by 33 we have,
r1013=3323r \leqslant \dfrac{{101}}{3} = 33\dfrac{2}{3}
Since rr is a whole number we have r33r \leqslant 33.
So the expression 100Cr(23)100r(13)r{}^{100}{C_r}{(\dfrac{2}{3})^{100 - r}}{(\dfrac{1}{3})^r} is maximum when r=33r = 33.
Therefore from (i)(i) we have P(X=r)P(X = r) is maximum when r=33r = 33.
\therefore The answer is 3333.

Note: Since the distribution here is binomial we could connect it with binomial expansion. Or in another way consider, (n+1)p=101×13(n + 1)p = 101 \times \dfrac{1}{3} is not an integer. So P(X=r)P(X = r) is maximum for the greatest integer less than or equal to 1013\dfrac{{101}}{3}, which is equal to 3333.