Solveeit Logo

Question

Question: If x=f (t) and y=f (t) are differentiable functions of t, then prove that y is a differentiable func...

If x=f (t) and y=f (t) are differentiable functions of t, then prove that y is a differentiable function of x and dydx=dydtdxdt, where dxdt0.\dfrac{{{\text{dy}}}}{{{\text{dx}}}} = \dfrac{{\dfrac{{{\text{dy}}}}{{{\text{dt}}}}}}{{\dfrac{{{\text{dx}}}}{{{\text{dt}}}}}},{\text{ where }}\dfrac{{{\text{dx}}}}{{{\text{dt}}}} \ne 0.Hence find dydx\dfrac{{{\text{dy}}}}{{{\text{dx}}}}if x = acos2t{\text{co}}{{\text{s}}^2}{\text{t}} and y = asin2t{\text{si}}{{\text{n}}^2}{\text{t}}.

Explanation

Solution

Hint – Using the given data in the question, i.e. the values of x and y, we differentiate them. Then on the output, we apply a basic sine function formula to determine the answer.

Complete step-by-step answer:
Given data,
x = acos2t{\text{co}}{{\text{s}}^2}{\text{t}} and y = asin2t{\text{si}}{{\text{n}}^2}{\text{t}}.
Differentiating x and y with respect to t, we get
dxdt= acos2t, dydt= asin2t dxdt= 2a cost ddtcost, dydt= 2a sint ddtsint dxdt= 2a(cost)×( - sint), dydt= a(2sint×cost) (ddx(at2)=2atddxt) dxdt= - 2a cost sint, dydt= 2a sint cost (ddx(sinθ)=cosθ and ddx(cosθ) = - sinθ ) dxdt= - a sin2t, dydt= a sin2t (sin2θ=2sinθcosθ)  \dfrac{{{\text{dx}}}}{{{\text{dt}}}} = {\text{ aco}}{{\text{s}}^2}{\text{t}},{\text{ }}\dfrac{{{\text{dy}}}}{{{\text{dt}}}} = {\text{ asi}}{{\text{n}}^2}{\text{t}} \\\ \Rightarrow \dfrac{{{\text{dx}}}}{{{\text{dt}}}} = {\text{ 2a cost }}\dfrac{{\text{d}}}{{{\text{dt}}}}{\text{cost}},{\text{ }}\dfrac{{{\text{dy}}}}{{{\text{dt}}}} = {\text{ 2a sint }}\dfrac{{\text{d}}}{{{\text{dt}}}}{\text{sint}} \\\ \Rightarrow \dfrac{{{\text{dx}}}}{{{\text{dt}}}} = {\text{ 2a}}\left( {{\text{cost}})\times ({\text{ - sint}}} \right),{\text{ }}\dfrac{{{\text{dy}}}}{{{\text{dt}}}} = {\text{ a}}\left( {2{\text{sint}} \times {\text{cost}}} \right){\text{ }}\left( {\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{a}}{{\text{t}}^2}} \right) = {\text{2at}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{t}}} \right) \\\ \Rightarrow \dfrac{{{\text{dx}}}}{{{\text{dt}}}} = {\text{ - 2a cost sint}},{\text{ }}\dfrac{{{\text{dy}}}}{{{\text{dt}}}} = {\text{ 2a sint cost }}\left( {\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\sin \theta } \right) = \cos \theta {\text{ and }}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{cos}}\theta } \right){\text{ = - sin}}\theta {\text{ }}} \right) \\\ \Rightarrow \dfrac{{{\text{dx}}}}{{{\text{dt}}}} = {\text{ - a sin2t}},{\text{ }}\dfrac{{{\text{dy}}}}{{{\text{dt}}}} = {\text{ a sin2t }}\left( {\sin 2\theta = 2{\text{sin}}\theta {\text{cos}}\theta } \right) \\\
Therefore,
dydx=dydtdxdt, where dxdt0.\dfrac{{{\text{dy}}}}{{{\text{dx}}}} = \dfrac{{\dfrac{{{\text{dy}}}}{{{\text{dt}}}}}}{{\dfrac{{{\text{dx}}}}{{{\text{dt}}}}}},{\text{ where }}\dfrac{{{\text{dx}}}}{{{\text{dt}}}} \ne 0.
dydx\dfrac{{{\text{dy}}}}{{{\text{dx}}}}=asin2t - asin2t\dfrac{{{\text{asin2t}}}}{{{\text{ - asin2t}}}}
dydx=1\Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}} = - 1
Hence, the answer.

Note – In order to solve questions of this type the key is to differentiate the given terms precisely. General knowledge of differentials of basic trigonometric functions is required. Then the value obtained is converted into the desired form using formulae of trigonometric functions.