Solveeit Logo

Question

Question: If \(x = e^{y + e^{y + ........\text{to }\infty}}\), then \(\frac{dy}{dx}\) is...

If x=ey+ey+........to x = e^{y + e^{y + ........\text{to }\infty}}, then dydx\frac{dy}{dx} is

A

1+xx\frac{1 + x}{x}

B

1x\frac{1}{x}

C

1xx\frac{1 - x}{x}

D

x1+x\frac{x}{1 + x}

Answer

1xx\frac{1 - x}{x}

Explanation

Solution

x=ey+xx = e^{y + x}

Taking log both sides, logx=(y+x)loge=y+x\log x = (y + x)\log e = y + x

y+x=logxy + x = \log xdydx+1=1x\frac{dy}{dx} + 1 = \frac{1}{x}dydx=1x1=1xx\frac{dy}{dx} = \frac{1}{x} - 1 = \frac{1 - x}{x}