Solveeit Logo

Question

Question: If \(x = \exp\left\{ \tan^{- 1}\left( \frac{y - x^{2}}{x^{2}} \right) \right\}\)then \(\frac{dy}{dx}...

If x=exp{tan1(yx2x2)}x = \exp\left\{ \tan^{- 1}\left( \frac{y - x^{2}}{x^{2}} \right) \right\}then dydx\frac{dy}{dx}equals

A

2x[1+tan(logx)]+xsec2(logx)2x\lbrack 1 + \tan(\log x)\rbrack + x\sec^{2}(\log x)

B

x[1+tan(logx)]+sec2(logx)x\lbrack 1 + \tan(\log x)\rbrack + \sec^{2}(\log x)

C

2x[1+tan(logx)]+x2sec2(logx)2x\lbrack 1 + \tan(\log x)\rbrack + x^{2}\sec^{2}(\log x)

D

2x[1+tan(logx)]+sec2(logx)2x\lbrack 1 + \tan(\log x)\rbrack + \sec^{2}(\log x)

Answer

2x[1+tan(logx)]+xsec2(logx)2x\lbrack 1 + \tan(\log x)\rbrack + x\sec^{2}(\log x)

Explanation

Solution

x=exp{tan1(yx2x2)}x = \exp\left\{ \tan^{- 1}\left( \frac{y - x^{2}}{x^{2}} \right) \right\}logx=tan1(yx2x2)\log x = \tan^{- 1}\left( \frac{y - x^{2}}{x^{2}} \right)

yx2x2=tan(logx)\frac{y - x^{2}}{x^{2}} = \tan(\log x)y=x2tan(logx)+x2y = x^{2}\tan(\log x) + x^{2}

dydx=2x.tan(logx)+x2.sec2(logx)x+2x\frac{dy}{dx} = 2x.\tan(\log x) + x^{2}.\frac{\sec^{2}(\log x)}{x} + 2x

dydx=2xtan(logx)+xsec2(logx)+2x\frac{dy}{dx} = 2x\tan(\log x) + x\sec^{2}(\log x) + 2x

dydx=2x[1+tan(logx)]+xsec2(logx)\frac{dy}{dx} = 2x\lbrack 1 + \tan(\log x)\rbrack + x\sec^{2}(\log x)