Question
Mathematics Question on Continuity and differentiability
If x=exp\left\\{tan^{-1}\left(\frac{y-x^{2}}{x^{2}}\right)\right\\}, then dxdy equals
A
2x[1+tan(logx)]+xsec2(logx)
B
x[1+tan(logx)]+sec2(logx)
C
2x[1+tan(logx)]+x2sec2(logx)
D
2x[1+tan(logx)]+sec2(logx)
Answer
2x[1+tan(logx)]+xsec2(logx)
Explanation
Solution
Given that, x=exp\left\\{tan^{-1}\left(\frac{y-x^{2}}{x^{2}}\right)\right\\} Taking log on both sides, we get logx=tan−1(x2y−x2) ⇒x2y−x2=tan(logx) ⇒y=x2tan(logx)+x2 Differentiating w.r.t. x, we get dxdy=2xtan(logx)+x2xsec2(logx)+2x ⇒dxdy=2x[1+tan(logx)]+xsec2(logx)