Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If x=exp\left\\{tan^{-1}\left(\frac{y-x^{2}}{x^{2}}\right)\right\\}, then dydx\frac{dy}{dx} equals

A

2x[1+tan(logx)]+xsec2(logx)2x[1+ tan(logx)] + x sec^2(log\,x)

B

x[1+tan(logx)]+sec2(logx)x[1 + tan(logx)] + sec^2(log \,x)

C

2x[1+tan(logx)]+x2sec2(logx)2x[1 + tan(logx)] + x^2sec^2(log\,x)

D

2x[1+tan(logx)]+sec2(logx)2x[1 + tan(logx)] + sec^2(log\,x)

Answer

2x[1+tan(logx)]+xsec2(logx)2x[1+ tan(logx)] + x sec^2(log\,x)

Explanation

Solution

Given that, x=exp\left\\{tan^{-1}\left(\frac{y-x^{2}}{x^{2}}\right)\right\\} Taking log on both sides, we get logx=tan1(yx2x2)log\,x=tan^{-1}\left(\frac{y-x^{2}}{x^{2}}\right) yx2x2=tan(logx)\Rightarrow \frac{y-x^{2}}{x^{2}}=tan\left(log\,x\right) y=x2tan(logx)+x2\Rightarrow y=x^{2}\,tan\left(logx\right)+x^{2} Differentiating ww.rr.tt. xx, we get dydx=2xtan(logx)+x2sec2(logx)x+2x\frac{dy}{dx}=2x\,tan\left(log\,x\right)+x^{2} \frac{sec^{2}\left(log\,x\right)}{x}+2x dydx=2x[1+tan(logx)]+xsec2(logx)\Rightarrow \frac{dy}{dx}=2x\left[1+tan\left(log\,x\right)\right]+x\,sec^{2}\left(log\,x\right)