Solveeit Logo

Question

Mathematics Question on Sets

If x=eθsinθ,y=eθcosθx = e^\theta \sin \theta, \quad y = e^\theta \cos \theta, where θθ is a parameter , then dydx(1,1)\left. \frac{dy}{dx} \right|_{(1,1)} is equal to

A

0

B

12-\frac{1}{2}

C

12\frac{1}{2}

D

14-\frac{1}{4}

Answer

0

Explanation

Solution

Given:
x=eθsinθx = e^\theta \sin \theta
y=eθcosθy = e^{\theta} \cos \theta
Differentiating both sides of the first equation with respect to θ:
ddθ(x)=ddθ(eθsinθ)\frac{d}{d\theta}(x) = \frac{d}{d\theta}(e^{\theta} \sin \theta)
Using the product rule, we have:
dxdθ=eθsinθ+eθcosθ\frac{dx}{d\theta} = e^\theta \sin \theta + e^\theta \cos \theta
Differentiating both sides of the second equation with respect to θ:
ddθ(y)=ddθ(eθcosθ)\frac{d}{d\theta}(y) = \frac{d}{d\theta}(e^\theta \cos \theta)
Using the product rule, we have:
dydθ=eθcosθeθsinθ\frac{dy}{d\theta} = e^\theta \cos \theta - e^\theta \sin \theta
Now, to find dydx\frac{dy}{dx}, we divide dydθdxdθ\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}
dydx=dydθdxdθ\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}
Substituting the expressions for dydθ\frac{dy}{d\theta} and dxdθ\frac{dx}{d\theta} , we get:
dydx=eθcosθeθsinθeθsinθ+eθcosθ\frac{dy}{dx} = \frac{e^\theta \cos \theta - e^\theta \sin \theta}{e^\theta \sin \theta + e^\theta \cos \theta}
Next, we can substitute the values of x and y at (1,1) into the equation to evaluate dydx:\frac{dy}{dx}:
x=eθsinθ=1x = e^\theta \sin \theta = 1
y=eθcosθ=1y = e^\theta \cos \theta = 1
Dividing the second equation by the first equation, we get:
tanθ=yx=11=1\tan \theta = \frac{y}{x} = \frac{1}{1} = 1
Simplifying the expression for dydx\frac{dy}{dx} using trigonometric identities:
dydx=cosθsinθsinθ+cosθ\frac{dy}{dx} = \frac{\cos \theta - \sin \theta}{\sin \theta + \cos \theta}
Since tanθ=1tan θ = 1, we can substitute cosθsinθsinθ+cosθ=121212+12=02=0\frac{\cos \theta - \sin \theta}{\sin \theta + \cos \theta} = \frac{\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}} = \frac{0}{\sqrt{2}} = 0
Therefore, at (1,1), dydx\frac{dy}{dx} is equal to 0, which corresponds to option (A) 0.