Solveeit Logo

Question

Mathematics Question on Differential equations

If xdy=y(dx+ydy),y(1)=1x dy = y(dx+y dy),y(1)=1 and y(x)>0y(x) > 0. Then, y(3)y(-3) is equal to

A

3

B

2

C

1

D

0

Answer

3

Explanation

Solution

The correct option is(A): 3

Given, xdy=y(dx+ydy),y>0x dy=y(dx+y dy), y > 0
xdyydx=y2dy\Rightarrow \, \, \, \, \, \, x \, dy-y \, dx=y^2dy
xdyydxy2=dyd(xy)=dy\Rightarrow \, \, \, \, \, \, \frac {x \, dy-y \, dx }{y^2}=dy \Rightarrow d\bigg ( \frac {x}{y} \bigg )=-dy
On integrating both sides, we get
\hspace10mm \frac {x}{y}=-y+c \hspace10mm ...(i)
Since, y(1)=1x=1,y=1y(1)=1 \Rightarrow x=1,y=1
\therefore \hspace8mm c=2
Now, E (i) becomes, xy+y=2\frac {x}{y}+y = 2
Again, for x=-3
\Rightarrow \hspace5mm -3+y^2=2y
\Rightarrow \hspace5mm y^2-2y-3=0
\Rightarrow \hspace5mm (y+1)(y-3)=0
As y>0, take y=3, neglecting y=-1.