Solveeit Logo

Question

Question: If \[x = \dfrac{{n\pi }}{2}\] satisfies the equation \[\sin \dfrac{x}{2} - \cos \dfrac{x}{2} = 1 - \...

If x=nπ2x = \dfrac{{n\pi }}{2} satisfies the equation sinx2cosx2=1sinx\sin \dfrac{x}{2} - \cos \dfrac{x}{2} = 1 - \sin x and the inequality x2π23π4\left| {\dfrac{x}{2} - \dfrac{\pi }{2}} \right| \le \dfrac{{3\pi }}{4}, then
A) n=1,0,3,5n = - 1,0,3,5
B) n=1,2,4,5n = 1,2,4,5
C) n=0,2,4n = 0,2,4
D) n=1,1,3,5n = - 1,1,3,5

Explanation

Solution

Here we will first find the values of xx by solving the given inequality. Then we will substitute the values of xx in the given equation. As we substitute those values, we will find the required values of nn.

Complete step by step solution:
At first we have to solve the inequality x2π23π4\left| {\dfrac{x}{2} - \dfrac{\pi }{2}} \right| \le \dfrac{{3\pi }}{4} to find the value of xx.
Here, modulus represents the non-negative integer without regard to its sign.
x2π23π4\Rightarrow \left| {\dfrac{x}{2} - \dfrac{\pi }{2}} \right| \le \dfrac{{3\pi }}{4}
Taking modulus on both the sides, we get
x2π23π4\Rightarrow \dfrac{x}{2} - \dfrac{\pi }{2} \le \left| {\dfrac{{3\pi }}{4}} \right|
xπ23π4\Rightarrow \dfrac{{x - \pi }}{2} \le \dfrac{{3\pi }}{4}
Multiplying both side by 2, we get
xπ3π2\Rightarrow x - \pi \le \dfrac{{3\pi }}{2}
Adding π\pi on both the sides, we get
x3π2+π\Rightarrow x \le \dfrac{{3\pi }}{2} + \pi
x5π2\Rightarrow x \le \dfrac{{5\pi }}{2}
So, the value of xx should be less than or equal to 5π2\dfrac{{5\pi }}{2} . Since the value lies in the modulus value, the negative value of nn can be neglected. So the values of xx are x=0,π2,2π2,3π2,4π2,5π2x = 0,\dfrac{\pi }{2},\dfrac{{2\pi }}{2},\dfrac{{3\pi }}{2},\dfrac{{4\pi }}{2},\dfrac{{5\pi }}{2} that is x=0,π2,π,3π2,2π,5π2x = 0,\dfrac{\pi }{2},\pi ,\dfrac{{3\pi }}{2},2\pi ,\dfrac{{5\pi }}{2} .These values of xx are obtained by the equation x=nπ2x = \dfrac{{n\pi }}{2}.
These values of xx are substituted in the equation sinx2cosx2=1sinx\sin \dfrac{x}{2} - \cos \dfrac{x}{2} = 1 - \sin x to obtain the values of nn.
Substituting x=0x = 0 in the given equation, we get
sin0cos0=1sin0\sin 0 - \cos 0 = 1 - \sin 0
Substituting the values of sin0\sin 0 and cos0\cos 0, we get
01=10 1=1\begin{array}{l} \Rightarrow 0 - 1 = 1 - 0\\\ \Rightarrow - 1 = 1\end{array}
x=0x = 0 does not satisfy the equation.
Substituting x=π2x = \dfrac{\pi }{2} in the given equation, we get
sinπ4cosπ4=1sinπ2\sin \dfrac{\pi }{4} - \cos \dfrac{\pi }{4} = 1 - \sin \dfrac{\pi }{2}
Substituting the values of sinπ2\sin \dfrac{\pi }{2} and cosπ2\cos \dfrac{\pi }{2}, we get
1212=11 0=0\begin{array}{l} \Rightarrow \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{{\sqrt 2 }} = 1 - 1\\\ \Rightarrow 0 = 0\end{array}
x=π2x = \dfrac{\pi }{2} satisfies the equation.
Substituting x=πx = \pi in the given equation, we get
sinπ2cosπ2=1sinπ\sin \dfrac{\pi }{2} - \cos \dfrac{\pi }{2} = 1 - \sin \pi
Substituting the values of sinπ\sin \pi and cosπ\cos \pi , we get
10=10 1=1\begin{array}{l} \Rightarrow 1 - 0 = 1 - 0\\\ \Rightarrow 1 = 1\end{array}
x=πx = \pi satisfies the equation.
Substitute x=3π2x = \dfrac{{3\pi }}{2} in the given equation, we get
sin3π4cos3π4=1sin3π2\sin \dfrac{{3\pi }}{4} - \cos \dfrac{{3\pi }}{4} = 1 - \sin \dfrac{{3\pi }}{2}
Substituting the values of sin3π2\sin \dfrac{{3\pi }}{2} and cos3π2\cos \dfrac{{3\pi }}{2}, we get
12+12=1+1 2=2\begin{array}{l} \Rightarrow \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} = 1 + 1\\\ \Rightarrow \sqrt 2 = 2\end{array}
x=3π2x = \dfrac{{3\pi }}{2}does not satisfy the equation.
Substituting x=2πx = 2\pi in the given equation, we get
sinπcosπ=1sin2π\sin \pi - \cos \pi = 1 - \sin 2\pi
Substituting the values of sin2π\sin 2\pi and cos2π\cos 2\pi , we get
0+1=10 1=1\begin{array}{l} \Rightarrow 0 + 1 = 1 - 0\\\ \Rightarrow 1 = 1\end{array}
x=2πx = 2\pi satisfies the equation.
Substitute x=5π2x = \dfrac{{5\pi }}{2} in the given equation, we get
sin5π4cos5π4=1sin5π2\sin \dfrac{{5\pi }}{4} - \cos \dfrac{{5\pi }}{4} = 1 - \sin \dfrac{{5\pi }}{2}
Substituting the values of sin3π2\sin \dfrac{{3\pi }}{2} and cos3π2\cos \dfrac{{3\pi }}{2}, we get
12+12=11 0=0\begin{array}{l} \Rightarrow \dfrac{{ - 1}}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} = 1 - 1\\\ \Rightarrow 0 = 0\end{array}
x=5π2x = \dfrac{{5\pi }}{2} satisfies the equation.
So the values of x=π2,π,2π,5π2x = \dfrac{\pi }{2},\pi ,2\pi ,\dfrac{{5\pi }}{2} .
By comparing the coefficient of xx , we get n=1,2,4,5n = 1,2,4,5

Therefore, n=1,2,4,5n = 1,2,4,5

Note:
Note: Here, we need to keep in mind different values of the trigonometric function of sinθ\sin \theta and cosθ\cos \theta . If we do not remember the values we might substitute wrong values in the equation and hence get wrong answers. We might commit a mistake by leaving the solution after solving the inequality and getting the value of xx. This will give us the wrong values of nn. We need to find all values of xx which satisfies the given equation to find the correct values of nn.