Question
Question: If \({{x}^{\dfrac{2}{3}}}+{{y}^{\dfrac{2}{3}}}={{a}^{\dfrac{2}{3}}}\), then \(\dfrac{dy}{dx}\) A....
If x32+y32=a32, then dxdy
A. (3y)31
B. (−xy)31
C. (yx)31
D. (−yx)31
Explanation
Solution
We try to form the indices formula for the value 32. We take the indices form of x32,y32,a32. We multiply the fraction with 3 to find the simplified form. The differentiation of constant gives 0. Then we use the formula of dxd(xn)=nxn−1 to find the derivatives.
Complete step by step answer:
We need to find the value of dxdy form of x32+y32=a32. These are cube root forms.
The given value is the form of indices. We are trying to find the root value of x32,y32,a32.
We find the individual differentiations. So,
dxdx32+dxdy32=dxda32
We use the derivative formula of dxd(xn)=nxn−1.
We find the derivatives of
\Rightarrow \dfrac{d}{dx}\left( {{x}^{\dfrac{2}{3}}} \right)=-3{{x}^{-\dfrac{1}{3}}}$$ $$\Rightarrow \dfrac{d}{dx}\left( {{y}^{\dfrac{2}{3}}} \right)=\dfrac{{{y}^{\dfrac{2}{3}-1}}}{\dfrac{2}{3}-1}\dfrac{dy}{dx} \\\ \Rightarrow \dfrac{d}{dx}\left( {{y}^{\dfrac{2}{3}}} \right)=-3{{y}^{-\dfrac{1}{3}}}\dfrac{dy}{dx}$$, $\Rightarrow \dfrac{d}{dx}\left( {{a}^{\dfrac{2}{3}}} \right)=0$. For the differentiation of $\dfrac{d}{dx}\left( {{y}^{\dfrac{2}{3}}} \right)$, we used chain rule. We now simplify the derivative equation. $$-3{{x}^{-\dfrac{1}{3}}}-3{{y}^{-\dfrac{1}{3}}}\dfrac{dy}{dx}=0 \\\ \Rightarrow 3{{y}^{-\dfrac{1}{3}}}\dfrac{dy}{dx}=-3{{x}^{-\dfrac{1}{3}}} \\\ \Rightarrow \dfrac{dy}{dx}=-\dfrac{{{x}^{-\dfrac{1}{3}}}}{{{y}^{-\dfrac{1}{3}}}} \\\ \Rightarrow \dfrac{dy}{dx}=-{{\left( \dfrac{x}{y} \right)}^{-\dfrac{1}{3}}} \\\ \therefore \dfrac{dy}{dx}={{\left( -\dfrac{y}{x} \right)}^{\dfrac{1}{3}}} $$ **Therefore, the correct option is B.** **Note:** The derivative form of $$\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$$ is applicable for all values of $n\in \mathbb{R}\backslash \left\\{ 0 \right\\}$. We also could have used chain rule where we need remember that in the chain rule $$\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}$$, we aren’t cancelling out the part $$d\left[ h\left( x \right) \right]$$.