Solveeit Logo

Question

Question: If \[x + \dfrac{1}{x} = \sqrt 3 \], then \[x\] equals 1 \[\cos \dfrac{\pi }{3} + i\sin \dfrac{\pi ...

If x+1x=3x + \dfrac{1}{x} = \sqrt 3 , then xx equals
1 cosπ3+isinπ3\cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3}
2 cosπ2+isinπ2\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}
3 sinπ6+icosπ6\sin \dfrac{\pi }{6} + i\cos \dfrac{\pi }{6}
4 cosπ6+isinπ6\cos \dfrac{\pi }{6} + i\sin \dfrac{\pi }{6}

Explanation

Solution

To find the value of xx from the given trigonometric function, we need to apply trigonometric identity values with respect to its functions such that, by finding the final expression we can get the required value of xx.
Formula used:
b±b24ac2a\dfrac{ - b \pm \sqrt {{b^2} - 4ac}}{2a}

Complete step by step answer:
Let us write the given data:
x+1x=3x + \dfrac{1}{x} = \sqrt 3
The given expression is written as:
x2+1=3x\Rightarrow {x^2} + 1 = \sqrt 3 x
x23x+1=0\Rightarrow {x^2} - \sqrt 3 x + 1 = 0 ………………………….. 1
As the obtained equation is of the form, ax2bx+ca{x^2} - bx + c; hence, the roots from the obtained equation 1, by applying the formula we get:
b±b24ac2a\dfrac{ - b \pm \sqrt {{b^2} - 4ac}}{2a}
3±342\Rightarrow\dfrac{ \sqrt 3 \pm \sqrt {3 - 4}}{2}
(3±1)2\Rightarrow \dfrac{{\left( {\sqrt 3 \pm \sqrt {-1} } \right)}}{2}
(3±i)2\Rightarrow \dfrac{{\left( {\sqrt 3 \pm i} \right)}}{2}
We know that, cosπ6=32\cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2} and sinπ6=12\sin \dfrac{\pi }{6} = \dfrac{1}{2}, hence we get:
(3±i)2=cosπ6+isinπ6\Rightarrow \dfrac{{\left( {\sqrt 3 \pm i} \right)}}{2} = \cos \dfrac{\pi }{6} + i\sin \dfrac{\pi }{6}

So, the correct answer is “Option 4”.

Note: The key point to prove any trigonometric function is to note the chart of all related functions with respect to the equation, and must know all the trigonometric function values as with respect to its degrees, as we can find and solve the question easily.