Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

If [x][x] denotes the greatest integer less than or equal to xx, then the value of the integral 02x2[x]dx\int\limits^{{2}}_{{0}}x^2 [x] dx

A

53\frac{5}{3}

B

73\frac{7}{3}

C

83\frac{8}{3}

D

43\frac{4}{3}

Answer

73\frac{7}{3}

Explanation

Solution

02x2[x]dx=01x2×0dx+12x2×1dx=(x3/3)12=7/3\int\limits^{{2}}_{{0}}x^2 [x] \cdot dx=\int\limits^{{1}}_{{0}}x^2\times 0dx+\int\limits^{{2}}_{{1}}x^2 \times 1dx=(x^3/3)^2_1=7/3