Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If [xx] denotes the greatest integer x\le x, then the system of linear equations [sinθsin\,\theta] x + [cosθ-cos\,\theta]y=0 [cotθcot\,\theta] x+y=0x + y = 0

A

have infinitely many solutions if θ(π2,2π3)(π,7π6)\theta \in (\frac{\pi}{2} , \frac{2\pi}{3}) \cup (\pi , \frac{7 \pi}{6})

B

have infinitely many solutions if θ(π2,2π3\theta \in (\frac{\pi}{2} , \frac{2\pi}{3}and has a unique solution if θ(π,7π6)\theta \in (\pi , \frac{7\pi}{6})

C

has a unique solution if θ(π2,2π3)\theta \in (\frac{\pi}{2} , \frac{2\pi}{3})and have infinitely many solutions if θ(π,7π6)\theta \in (\pi, \frac{7 \pi}{6})

D

has a unique solution if θ(π2,2π3)(π,7π6)\theta \in (\frac{\pi}{2} , \frac{2\pi}{3}) \cup (\pi, \frac{7\pi}{6})

Answer

have infinitely many solutions if θ(π2,2π3\theta \in (\frac{\pi}{2} , \frac{2\pi}{3}and has a unique solution if θ(π,7π6)\theta \in (\pi , \frac{7\pi}{6})

Explanation

Solution

[sinθ\theta]x + [-cosθ\theta]y = 0 and [cosθ\theta] x + y = 0
for infinite many solution
[sinθ cosθ][cosθ] 1=0\left|\left[\begin{array}{cc}\sin \theta \\\ \cos \theta\end{array}\right] \quad \begin{array}{c}{[-\cos \theta]} \\\ 1\end{array}\right|=0
ie [sin θ\theta] = - [cos θ\theta] [cot θ\theta] (1)
when θ(π2,2π3)  sinθ(0,12)\theta \in (\frac{\pi}{2} , \frac{2\pi}{3}) \Rightarrow \ \ sin \theta \in \bigg(0, \frac{1}{2}\bigg)
                        cosθ(0,12)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -cos\theta \in \bigg(0, \frac{1}{2}\bigg)
                         cotθ(13,0)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ cot\theta \in \bigg(-\frac{1}{\sqrt{3}} , 0\bigg)
when θ(π,7π6)   sinθ(12,0)\theta \in \bigg(\pi , \frac{7 \pi}{6}\bigg) \ \Rightarrow \ \ sin \theta \in \bigg(- \frac{1}{2} , 0\bigg)
                  cosθ(32,1)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -cos\theta \in \bigg(\frac{\sqrt{3}}{2} , 1\bigg)
                  cotθ(3,)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ cot \theta \in (\sqrt{3} , \infty)
when θ(π2,2π3)\theta \in (\frac{\pi}{2} , \frac{2\pi}{3}) then equation (i) satisfied
there fore infinite many solution.
when θ(π,7π6)\theta \in \bigg(\pi , \frac{7\pi}{6}\bigg) then equation (i) not
satisfied there fore infinite unique solution.