Solveeit Logo

Question

Question: If [x] denotes the greatest integer function then $\int_0^5 x^2[x]dx =$...

If [x] denotes the greatest integer function then 05x2[x]dx=\int_0^5 x^2[x]dx =

Answer

4003\frac{400}{3}

Explanation

Solution

Solution Explanation:

  1. Write the integral as a sum over intervals where [x][x] is constant:

    05x2[x]dx=n=04nnn+1x2dx.\int_0^5 x^2 \, [x] \,dx = \sum_{n=0}^{4} n \int_n^{n+1} x^2 \, dx.
  2. Evaluate each integral:

    nn+1x2dx=(n+1)3n33.\int_n^{n+1} x^2 \, dx = \frac{(n+1)^3 - n^3}{3}.
  3. Compute for n=1,2,3,4n = 1,2,3,4 (for n=0n = 0, the term is 0):

    • For n=1n=1: 123133=731 \cdot \frac{2^3-1^3}{3} = \frac{7}{3}
    • For n=2n=2: 233233=22783=3832 \cdot \frac{3^3-2^3}{3} = 2\cdot\frac{27-8}{3} = \frac{38}{3}
    • For n=3n=3: 343333=4333=6427=373 \cdot \frac{4^3-3^3}{3}= 4^3-3^3 = 64-27= 37
    • For n=4n=4: 453433=4125643=24434 \cdot \frac{5^3-4^3}{3} = 4\cdot\frac{125-64}{3} = \frac{244}{3}
  4. Sum the results:

    73+383+37+2443=(7+38+244)3+37=2893+37.\frac{7}{3}+\frac{38}{3}+37+\frac{244}{3} = \frac{(7+38+244)}{3}+37 = \frac{289}{3}+37.

    Convert 3737 to thirds: 37=111337=\frac{111}{3}

    289+1113=4003.\frac{289+111}{3} = \frac{400}{3}.