Question
Question: If [x] denotes the greatest integer function then $\int_0^5 x^2[x]dx =$...
If [x] denotes the greatest integer function then ∫05x2[x]dx=
Answer
3400
Explanation
Solution
Solution Explanation:
-
Write the integral as a sum over intervals where [x] is constant:
∫05x2[x]dx=n=0∑4n∫nn+1x2dx. -
Evaluate each integral:
∫nn+1x2dx=3(n+1)3−n3. -
Compute for n=1,2,3,4 (for n=0, the term is 0):
- For n=1: 1⋅323−13=37
- For n=2: 2⋅333−23=2⋅327−8=338
- For n=3: 3⋅343−33=43−33=64−27=37
- For n=4: 4⋅353−43=4⋅3125−64=3244
-
Sum the results:
37+338+37+3244=3(7+38+244)+37=3289+37.Convert 37 to thirds: 37=3111
3289+111=3400.