Solveeit Logo

Question

Question: If \( x = \cos \theta \) , \( y = \sin 5\theta \) , then \( \left( {1 - {x^2}} \right)\dfrac{{{d^2}y...

If x=cosθx = \cos \theta , y=sin5θy = \sin 5\theta , then (1x2)d2ydx2xdydx\left( {1 - {x^2}} \right)\dfrac{{{d^2}y}}{{d{x^2}}} - x\dfrac{{dy}}{{dx}} is equal to
A. 5y- 5y
B. 5y5y
C. 25y25y
D. 25y- 25y

Explanation

Solution

Hint : In order to find the value of (1x2)d2ydx2xdydx\left( {1 - {x^2}} \right)\dfrac{{{d^2}y}}{{d{x^2}}} - x\dfrac{{dy}}{{dx}} , split the equation into different parts, and simplify them each separately. Start with differentiating x=cosθx = \cos \theta and y=sin5θy = \sin 5\theta with respect to θ\theta , then divide the results in order to get dydx\dfrac{{dy}}{{dx}} . Substitute the values in the equation to solve and get the results.
Formula used:
d(cosθ)dθ=sinθ\dfrac{{d\left( {\cos \theta } \right)}}{{d\theta }} = - \sin \theta
d(sinθ)dθ=5cos5θ\dfrac{{d\left( {\sin \theta } \right)}}{{d\theta }} = 5\cos 5\theta
(1cos2θ)=sin2θ\left( {1 - {{\cos }^2}\theta } \right) = {\sin ^2}\theta
cosθsinθ=cotθ\dfrac{{\cos \theta }}{{\sin \theta }} = \cot \theta
ddx(uv)=vdudxudvdxv2\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}

Complete step-by-step answer :
We are given two functions: x=cosθx = \cos \theta and y=sin5θy = \sin 5\theta .
Differentiating x=cosθx = \cos \theta with respect to θ\theta , we get:
dxdθ=d(cosθ)dθ\dfrac{{dx}}{{d\theta }} = \dfrac{{d\left( {\cos \theta } \right)}}{{d\theta }}
dxdθ=d(cosθ)dθ=sinθ\Rightarrow \dfrac{{dx}}{{d\theta }} = \dfrac{{d\left( {\cos \theta } \right)}}{{d\theta }} = - \sin \theta
dxdθ=sinθ\Rightarrow \dfrac{{dx}}{{d\theta }} = - \sin \theta ……(1)
Similarly, differentiating y=sin5θy = \sin 5\theta with respect to θ\theta , we get:
dydθ=d(sin5θ)dθ\dfrac{{dy}}{{d\theta }} = \dfrac{{d\left( {\sin 5\theta } \right)}}{{d\theta }}
dydθ=d(sinθ)dθ=5cos5θ\Rightarrow \dfrac{{dy}}{{d\theta }} = \dfrac{{d\left( {\sin \theta } \right)}}{{d\theta }} = 5\cos 5\theta
dydθ=5cos5θ\Rightarrow \dfrac{{dy}}{{d\theta }} = 5\cos 5\theta …….(2)
Dividing equation 2 by equation 1, we get:
dydθdxdθ=5cos5θsinθ\Rightarrow \dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}} = \dfrac{{5\cos 5\theta }}{{ - \sin \theta }}
Cancelling dθd\theta , we get:
dydx=5cos5θsinθ\Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{5\cos 5\theta }}{{\sin \theta }} …..(3)
Since, we also need d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}} , so differentiating equation 3 again with respect to xx , we get:
d2ydx2=ddx(dydx)\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( {\dfrac{{dy}}{{dx}}} \right)
Substituting the value of equation 3 in above equation, we get:
d2ydx2=ddx(5cos5θsinθ)\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( { - \dfrac{{5\cos 5\theta }}{{\sin \theta }}} \right)
Since, we have θ\theta inside the brace, we can expand it as, where we divide and multiply by dθd\theta , we get:
d2ydx2=ddθ(5cos5θsinθ)×dθdx\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{d\theta }}\left( { - \dfrac{{5\cos 5\theta }}{{\sin \theta }}} \right) \times \dfrac{{d\theta }}{{dx}}
From the quotient rule, we know ddx(uv)=vdudxudvdxv2\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}} .
Comparing ddx(uv)\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) with ddθ(5cos5θsinθ)\dfrac{d}{{d\theta }}\left( { - \dfrac{{5\cos 5\theta }}{{\sin \theta }}} \right) , we get:
u=5cos5θ v=sinθ   u = 5\cos 5\theta \\\ v = \sin \theta \;
Expanding d2ydx2=ddθ(5cos5θsinθ)×dθdx\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{d\theta }}\left( { - \dfrac{{5\cos 5\theta }}{{\sin \theta }}} \right) \times \dfrac{{d\theta }}{{dx}} using uv\dfrac{u}{v} method, we get:
d2ydx2=5(sinθd(cos5θ)dθcos5θd(sinθ)dθsin2θ)×1sinθ\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - 5\left( {\dfrac{{\sin \theta \dfrac{{d\left( {\cos 5\theta } \right)}}{{d\theta }} - \cos 5\theta \dfrac{{d\left( {\sin \theta } \right)}}{{d\theta }}}}{{{{\sin }^2}\theta }}} \right) \times \dfrac{1}{{ - \sin \theta }}
d2ydx2=5(sinθ(5sin5θ)cos5θcosθsin2θ)×1sinθ\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - 5\left( {\dfrac{{\sin \theta \left( { - 5\sin 5\theta } \right) - \cos 5\theta \cos \theta }}{{{{\sin }^2}\theta }}} \right) \times \dfrac{1}{{ - \sin \theta }}
Can be solved further and written as:
d2ydx2=(25sinθsin5θ+5cos5θcosθsin3θ)\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - \left( {\dfrac{{25\sin \theta \sin 5\theta + 5\cos 5\theta \cos \theta }}{{{{\sin }^3}\theta }}} \right)
d2ydx2=(25sinθsin5θ5cos5θcosθsin3θ)\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \left( {\dfrac{{ - 25\sin \theta \sin 5\theta - 5\cos 5\theta \cos \theta }}{{{{\sin }^3}\theta }}} \right)
We need to find the value of (1x2)d2ydx2xdydx\left( {1 - {x^2}} \right)\dfrac{{{d^2}y}}{{d{x^2}}} - x\dfrac{{dy}}{{dx}} :
So, substituting the values we found in the above equation, we get:
(1x2)d2ydx2xdydx\left( {1 - {x^2}} \right)\dfrac{{{d^2}y}}{{d{x^2}}} - x\dfrac{{dy}}{{dx}}
(1cos2θ)(25sinθsin5θ5cos5θcosθsin3θ)cosθ(5cos5θsinθ)\Rightarrow \left( {1 - {{\cos }^2}\theta } \right)\left( {\dfrac{{ - 25\sin \theta \sin 5\theta - 5\cos 5\theta \cos \theta }}{{{{\sin }^3}\theta }}} \right) - \cos \theta \left( { - \dfrac{{5\cos 5\theta }}{{\sin \theta }}} \right)
Since, we know that (1cos2θ)=sin2θ\left( {1 - {{\cos }^2}\theta } \right) = {\sin ^2}\theta , so writing that above:
(sin2θ)(25sinθsin5θ5cos5θcosθsin3θ)+5cosθcos5θsinθ\Rightarrow \left( {{{\sin }^2}\theta } \right)\left( {\dfrac{{ - 25\sin \theta \sin 5\theta - 5\cos 5\theta \cos \theta }}{{{{\sin }^3}\theta }}} \right) + \dfrac{{5\cos \theta \cos 5\theta }}{{\sin \theta }}
Cancelling sin2θ{\sin ^2}\theta :
(25sinθsin5θ5cos5θcosθsinθ)+5cosθcos5θsinθ\Rightarrow \left( {\dfrac{{ - 25\sin \theta \sin 5\theta - 5\cos 5\theta \cos \theta }}{{\sin \theta }}} \right) + \dfrac{{5\cos \theta \cos 5\theta }}{{\sin \theta }}
25sinθsin5θsinθ5cos5θcosθsinθ+5cosθcos5θsinθ\Rightarrow \dfrac{{ - 25\sin \theta \sin 5\theta }}{{\sin \theta }} - \dfrac{{5\cos 5\theta \cos \theta }}{{\sin \theta }} + \dfrac{{5\cos \theta \cos 5\theta }}{{\sin \theta }}
Cancelling sinθ\sin \theta from the first operand:
25sin5θ5cos5θcosθsinθ+5cosθcos5θsinθ\Rightarrow - 25\sin 5\theta - \dfrac{{5\cos 5\theta \cos \theta }}{{\sin \theta }} + \dfrac{{5\cos \theta \cos 5\theta }}{{\sin \theta }}
Since, we know that cosθsinθ=cotθ\dfrac{{\cos \theta }}{{\sin \theta }} = \cot \theta , so writing it in the above equation, we get:
25sin5θ5cos5θcotθ+5cos5θcotθ\Rightarrow - 25\sin 5\theta - 5\cos 5\theta \cot \theta + 5\cos 5\theta \cot \theta
25sin5θ\Rightarrow - 25\sin 5\theta
As we were given that y=sin5θy = \sin 5\theta , so writing sin5θ=y\sin 5\theta = y in the above equation, and we get:
25sin5θ\Rightarrow - 25\sin 5\theta
25y\Rightarrow - 25y
And, we get that (1x2)d2ydx2xdydx=25y\left( {1 - {x^2}} \right)\dfrac{{{d^2}y}}{{d{x^2}}} - x\dfrac{{dy}}{{dx}} = - 25y .
Therefore, Option 4 is correct.
So, the correct answer is “Option 4”.

Note : It’s important to remember the formulas of differentiation for easy solving and less error.
Always split the terms and differentiate or separately solve and get the result, solving at once may lead to error.