Solveeit Logo

Question

Question: If \[x\cos \alpha + y\sin \alpha = p\]is a tangent to a circle \[{x^2} + {y^2} = 2q(x\cos \alpha + y...

If xcosα+ysinα=px\cos \alpha + y\sin \alpha = pis a tangent to a circle x2+y2=2q(xcosα+ysinα){x^2} + {y^2} = 2q(x\cos \alpha + y\sin \alpha ) then the set of possible values of p is

Explanation

Solution

In a quadratic equationax2+bx+c=0a{x^2} + bx + c = 0, its discriminant is b24ac\sqrt {{b^2} - 4ac} . In a second-degree quadratic equation, we know it has two values for its unknown value. When the discriminant value is zero, then the circle and parabola are tangent with each other. To solve this problem, we need to understand the relation between circles and lines, how this can be explained using a quadratic equation.

Complete step by step answer:
Now we look at the given question, we are given an equation xcosα+ysinα=px\cos \alpha + y\sin \alpha = p.
Let’s find the value of ‘y’ from this equation.
From this we have y=pxcosαsinαy = \dfrac{{p - x\cos \alpha }}{{\sin \alpha }}
Now put this value of ‘p’ in the given equation of the circle.
That is x2+y2=2q(xcosα+ysinα){x^2} + {y^2} = 2q(x\cos \alpha + y\sin \alpha )becomesx2+(pxcosαsinα)2=2qxcosα+2q(pxcosαsinα)sinα{x^2} + {\left( {\dfrac{{p - x\cos \alpha }}{{\sin \alpha }}} \right)^2} = 2qx\cos \alpha + 2q\left( {\dfrac{{p - x\cos \alpha }}{{\sin \alpha }}} \right)\sin \alpha
That is x2+(p22pxcosα+x2cos2αsin2α)2qxcosα2qp+2qxcosα=0{x^2} + \left( {\dfrac{{{p^2} - 2px\cos \alpha + {x^2}{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }}} \right) - 2qx\cos \alpha - 2qp + 2qx\cos \alpha = 0
Or we will get x2sin2α+p22pxcosα+x2cos2α2qpsin2α=0{x^2}{\sin ^2}\alpha + {p^2} - 2px\cos \alpha + {x^2}{\cos ^2}\alpha - 2qp{\sin ^2}\alpha = 0
x2(sin2α+cos2α)+p22pxcosα2qpsin2α=0{x^2}\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) + {p^2} - 2px\cos \alpha - 2qp{\sin ^2}\alpha = 0
x22pxcosα+p22qpsin2α=0{x^2} - 2px\cos \alpha + {p^2} - 2qp{\sin ^2}\alpha = 0
This is of the form ax2+bx+c=0a{x^2} + bx + c = 0wherea  =1,  b  =2pcos,c=p22qpsin2a\; = 1,\;b\; = - 2p\cos \propto ,c = {p^2} - 2qp{\sin ^2} \propto
The equation of discriminant is b24ac\sqrt {{b^2} - 4ac}
That is (2pcosα)24×1×(p22qpsin2α){\left( { - 2p{\text{cos}}\alpha } \right)^2} - 4 \times 1 \times \left( {{p^2} - 2qp{\text{si}}{{\text{n}}^2}\alpha } \right)
For being tangent, the value of the discriminant should be zero. Therefore, we have to equate this equation to zero.
That is (2pcosα)24×1×(p22qpsin2α)=0{\left( { - 2p\cos \alpha } \right)^2} - 4 \times 1 \times \left( {{p^2} - 2qp{{\sin }^2}\alpha } \right) = 0
4p2cos2α4p2+8qpsin2α=04{p^2}{\cos ^2}\alpha - 4{p^2} + 8qp{\sin ^2}\alpha = 0
2qpsin2αp2(1cos2α)=02qp{\sin ^2}\alpha - {p^2}(1 - {\cos ^2}\alpha ) = 0
But we know 1cos2α=sin2α1 - {\cos ^2}\alpha = {\sin ^2}\alpha
Then the equation will become 2qpsin2αp2sin2α=02qp{\sin ^2}\alpha - {p^2}{\sin ^2}\alpha = 0
Or sin2α(2qpp2)=0{\sin ^2}\alpha (2qp - {p^2}) = 0
But sin2α0{\sin ^2}\alpha \ne 0
Therefore 2qpp2=02qp - {p^2} = 0
That is p(2qp)=0p\left( {2q - p} \right) = 0
On solving we get values of p as ‘p = 0p{\text{ }} = {\text{ }}0’ and ‘p = 2qp{\text{ }} = {\text{ }}2q

Note:
When the value of the discriminant is positive, we have two solutions for the equation. If the discriminant value is negative then there will be no solution and when the discriminant value is zero, then there is only one solution. Also, the equation of a circle with center (h, k) and radius ‘r’ is (xh)2+(yk)2=r2{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}.