Solveeit Logo

Question

Question: If \(x\cos (a+y)=\cos y\), then prove that \(\dfrac{dy}{dx}=\dfrac{{{\cos }^{2}}(a+y)}{\sin a}\). Sh...

If xcos(a+y)=cosyx\cos (a+y)=\cos y, then prove that dydx=cos2(a+y)sina\dfrac{dy}{dx}=\dfrac{{{\cos }^{2}}(a+y)}{\sin a}. Show that sinad2ydx2+sin2(a+y)dydx=0\sin a\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+\sin 2(a+y)\dfrac{dy}{dx}=0.

Explanation

Solution

Before solving this question we should be aware of derivatives of trigonometric functions. For solving this question we will derive the given equation with respect to xx,2 times and simplify the equations.

Complete step by step answer:
ddxcosx=sinx sin(AB)=sinAcosBsinBcosA \begin{aligned} & \dfrac{d}{dx}\cos x=-\sin x \\\ & \sin (A-B)=\sin A\cos B-\sin B\cos A \\\ \end{aligned}
We are going to use the above formulas and chain rule method for solving this question.
Chain rule method: ddxu=dudy.dydx\dfrac{d}{dx}u=\dfrac{du}{dy}.\dfrac{dy}{dx} where uu is a function of yy.
Let’s derivative the given equation with respect to xx
We have x=cosycos(a+y)x=\dfrac{\cos y}{\cos (a+y)}
By applying derivation with respect to xx on both sides.
dxdx=ddy(cosycos(a+y))dydx  \begin{aligned} & \dfrac{dx}{dx}=\dfrac{d}{dy}\left( \dfrac{\cos y}{\cos (a+y)} \right)\dfrac{dy}{dx} \\\ & \\\ \end{aligned}
By using chain rule, we have got the above simplified equation.
As we knowddx(uv)=vdudxudvdxv2\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}} , ddxcosx=sinx\dfrac{d}{dx}\cos x=-\sin xand sin(AB)=sinAcosBsinBcosA\sin (A-B)=\sin A\cos B-\sin B\cos A
Here, we have ddycos(a+y)\dfrac{d}{dy}\cos (a+y) to simplify this let us assume u=a+yu=a+y
And perform some simplifications.
dudy=0+dydy du=dy \begin{aligned} & \dfrac{du}{dy}=0+\dfrac{dy}{dy} \\\ & du=dy \\\ \end{aligned}
Let us replace dudu with dydy.
Since aa is constant.
dducosu=sinu ddxcos(a+y)=sin(a+y) \begin{aligned} & \dfrac{d}{du}\cos u=-\sin u \\\ & \Rightarrow \dfrac{d}{dx}\cos (a+y)=-\sin (a+y) \\\ \end{aligned}
Using this in the above equation, we get
1=cos(a+y)(siny)cosy(sin(a+y))cos2(a+y)dydx 1=sin(a+yy)cos2(a+y)dydx dydx=cos2(a+y)sina \begin{aligned} & 1=\dfrac{\cos (a+y)(-\sin y)-\cos y(-\sin (a+y))}{{{\cos }^{2}}(a+y)}\cdot \dfrac{dy}{dx} \\\ & 1=\dfrac{\sin (a+y-y)}{{{\cos }^{2}}(a+y)}\cdot \dfrac{dy}{dx} \\\ & \dfrac{dy}{dx}=\dfrac{{{\cos }^{2}}(a+y)}{\sin a} \\\ \end{aligned}
Hence, proved.
Now, we required to prove that sinad2ydx2+sin2(a+y)dydx=0\sin a\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+\sin 2(a+y)\dfrac{dy}{dx}=0.
Let's derive the value we got once again with respect to xx.
ddx(dydx)=ddx(cos2(a+y)sina) sinad2ydx2=ddx(cos2(a+y)) \begin{aligned} & \dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( \dfrac{{{\cos }^{2}}(a+y)}{\sin a} \right) \\\ & \sin a\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( {{\cos }^{2}}(a+y) \right) \\\ \end{aligned}
Since aa is constant sina\sin a is also constant and ddxsina=0\dfrac{d}{dx}\sin a=0.
As we know ddxcos2x=sin2x\dfrac{d}{dx}{{\cos }^{2}}x=-\sin 2x.
Here, we have ddxcos2(a+y)\dfrac{d}{dx}{{\cos }^{2}}(a+y) to simplify this let us assume u=a+yu=a+y
And perform some simplifications.
dudy=0+dydy du=dy \begin{aligned} & \dfrac{du}{dy}=0+\dfrac{dy}{dy} \\\ & du=dy \\\ \end{aligned}
Let us replace dudu with dydy.
Since aa is constant.
dducos2u=sin2u ddycos2(a+y)=sin2(a+y)\begin{aligned} & \dfrac{d}{du}{{\cos }^{2}}u=-\sin 2u \\\ & \Rightarrow \dfrac{d}{dy}{{\cos }^{2}}(a+y)=-\sin 2(a+y) \end{aligned}
Using this in the above equation, let us simplify the equation we have
sinad2ydx2=[ddycos2(a+y)]dydx sinad2ydx2=[sin2(a+y)]dydx  \begin{aligned} & \sin a\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left[ \dfrac{d}{dy}{{\cos }^{2}}(a+y) \right]\dfrac{dy}{dx} \\\ & \sin a\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=[-\sin 2(a+y)]\dfrac{dy}{dx} \\\ & \\\ \end{aligned}
sinad2ydx2+sin2(a+y)dydx=0\sin a\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+\sin 2(a+y)\dfrac{dy}{dx}=0
Hence, proved.

Note: Here in this question,aa is constant. So,sina\sin a is also constant and ddxsina=0\dfrac{d}{dx}\sin a=0.If we take aa as not constant it will lead us to complete different conclusion and we will also face difficulty will trying to simplify the equations we have. Because of mistakes like these we will be directed towards a completely different answer.