Solveeit Logo

Question

Question: If \[x = {\cos ^7}\theta \]and \[y = \sin \theta \], then \[\dfrac{{{d^3}x}}{{d{y^3}}} = \] (A) \[...

If x=cos7θx = {\cos ^7}\theta and y=sinθy = \sin \theta , then d3xdy3=\dfrac{{{d^3}x}}{{d{y^3}}} =
(A) 1054sin4θ\dfrac{{105}}{4}\sin 4\theta
(B) 1052sin2θ\dfrac{{105}}{2}\sin 2\theta
(C) 1054cos4θ\dfrac{{105}}{4}\cos 4\theta
(D) None of these

Explanation

Solution

In this question, we have to choose the required solution for the given particular options.
First, we have to differentiate the given x and y terms with respect to x. by using the chain rule we can differentiate the given terms. The given of the question is the value of x and y, they are the functions of trigonometry terms. Here we have to use some trigonometric and differentiation formula to find the required solution. We have mentioned that in the formula used. Then using the all required terms in the required solution, we will get the correct result.

Complete step-by-step answer:
It is given that, x=cos7θx = {\cos ^7}\theta and y=sinθy = \sin \theta .
We need to find out the value of d3xdy3\dfrac{{{d^3}x}}{{d{y^3}}}.
Now,x=cos7θx = {\cos ^7}\theta
Differentiating x with respect to θ\theta , we get,
dxdθ=7cos6θ(sinθ)=7sinθcos6θ\dfrac{{dx}}{{d\theta }} = 7{\cos ^6}\theta \left( { - \sin \theta } \right) = - 7\sin \theta {\cos ^6}\theta ……….i)
y=sinθy = \sin \theta
Differentiating y with respect to θ\theta , we get,
\Rightarrow$$$\dfrac{{dy}}{{d\theta }} = \cos \theta $$…………ii) Here, y depends on the variable \theta andalsothevariablexdependsonthevariableand also the variable x depends on the variable\theta ,thenapplyingchainruleweget,, then applying chain rule we get, \Rightarrow\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{d\theta }} \times \dfrac{{d\theta }}{{dx}}$$ Using i) and ii) we get, $\Rightarrow\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{d\theta }} \times \dfrac{{\dfrac{1}{1}}}{{\dfrac{{dx}}{{d\theta }}}} = \cos \theta \times \dfrac{1}{{ - 7\sin \theta {{\cos }^6}\theta }} = \dfrac{1}{{ - 7\sin \theta {{\cos }^5}\theta }}v v\dfrac{{dx}}{{dy}} = - 7\sin \theta {\cos ^5}\theta Differentiating with respect to y, we get, $\Rightarrow$$$\dfrac{{{d^2}x}}{{d{y^2}}} = \dfrac{d}{{dy}}\left( { - 7\sin \theta {{\cos }^5}\theta } \right)
Let us consider that dydx=dydθ×dθdx\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{d\theta }} \times \dfrac{{d\theta }}{{dx}} we get,
=dθdy.ddθ(7sinθcos5θ)= \dfrac{{d\theta }}{{dy}}.\dfrac{d}{{d\theta }}\left( { - 7\sin \theta {{\cos }^5}\theta } \right)
Using ii) ,we get,
=1cosθ(7cosθcos5θ7sinθ×5cos4θ(sinθ))= \dfrac{1}{{\cos \theta }}\left( { - 7\cos \theta {{\cos }^5}\theta - 7\sin \theta \times 5{{\cos }^4}\theta \left( { - \sin \theta } \right)} \right)
ify=uv,dydx=dudxv+udvdxy = uv,\dfrac{{dy}}{{dx}} = \dfrac{{du}}{{dx}}v + u\dfrac{{dv}}{{dx}} then,
=7cos5θ+35sin2θcos3θ= - 7{\cos ^5}\theta + 35{\sin ^2}\theta {\cos ^3}\theta
Since we already know that sin2θ=1cos2θ{\sin ^2}\theta = 1 - {\cos ^2}\theta
=7cos5θ+35(1cos2θ)cos3θ= - 7{\cos ^5}\theta + 35\left( {1 - {{\cos }^2}\theta } \right){\cos ^3}\theta
Solving we get,
=7cos5θ+35cos3θ35cos5θ= - 7{\cos ^5}\theta + 35{\cos ^3}\theta - 35{\cos ^5}\theta
Thus we get, d2xdy2=42cos5θ+35cos3θ\dfrac{{{d^2}x}}{{d{y^2}}} = - 42{\cos ^5}\theta + 35{\cos ^3}\theta
Differentiating d2xdy2\dfrac{{{d^2}x}}{{d{y^2}}} with respect to y we get,
d3xdy3=ddy(42cos5θ+35cos3θ)\dfrac{{{d^3}x}}{{d{y^3}}} = \dfrac{d}{{dy}}\left( { - 42{{\cos }^5}\theta + 35{{\cos }^3}\theta } \right)
Let us consider that dydx=dydθ×dθdx\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{d\theta }} \times \dfrac{{d\theta }}{{dx}} we get,
d3xdy3=dθdy×ddθ(42cos5θ+35cos3θ)\dfrac{{{d^3}x}}{{d{y^3}}} = \dfrac{{d\theta }}{{dy}} \times \dfrac{d}{{d\theta }}\left( { - 42{{\cos }^5}\theta + 35{{\cos }^3}\theta } \right)
Using ii) we get,
=1cosθ(42×5cos4θ(sinθ)+35×3cos2θ(sinθ))= \dfrac{1}{{\cos \theta }}\left( { - 42 \times 5{{\cos }^4}\theta \left( { - \sin \theta } \right) + 35 \times 3{{\cos }^2}\theta \left( { - \sin \theta } \right)} \right)
=210sinθcos3θ105sinθcosθ= 210\sin \theta {\cos ^3}\theta - 105\sin \theta \cos \theta
Using the trigonometric formula, cos2θ=2cos2θ1\cos 2\theta = 2{\cos ^2}\theta - 1
=105sinθcosθ(2cos2θ1)= 105\sin \theta \cos \theta \left( {2{{\cos }^2}\theta - 1} \right)
Using the trigonometric formula, sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
=1052×2sinθcosθ×cos2θ= \dfrac{{105}}{2} \times 2\sin \theta \cos \theta \times \cos 2\theta
Simplifying we get,
=1052sin2θcos2θ= \dfrac{{105}}{2}\sin 2\theta \cos 2\theta
Multiply and divide by 2 we get,
=1054×2sin2θcos2θ= \dfrac{{105}}{4} \times 2\sin 2\theta \cos 2\theta
Hence we get,
=1054sin4θ= \dfrac{{105}}{4}\sin 4\theta

\therefore The option (A) is the correct option.

Note: Chain Rule:
If a variable y depends on the variable z, which itself depends on the variable x (that is y and z are dependent variables), then y, via the intermediate variable of z, depends on x as well. In which case, the chain rule states that: dydx=dydz×dzdx\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dz}} \times \dfrac{{dz}}{{dx}}.
Differentiation formula:
dxndx=nxn1\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}
ddx(sinx)=cosx\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x
ddx(cosx)=sinx\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x
Trigonometric formula:
sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
cos2θ=2cos2θ1\cos 2\theta = 2{\cos ^2}\theta - 1
sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta