Solveeit Logo

Question

Question: If \(x = \cos 10{^\circ}\cos 20{^\circ}\cos 40{^\circ},\)then the value of \(x\) is...

If x=cos10cos20cos40,x = \cos 10{^\circ}\cos 20{^\circ}\cos 40{^\circ},then the value of xx is

A

14tan10\frac{1}{4}\tan 10{^\circ}

B

18cot10\frac{1}{8}\cot 10{^\circ}

C

18cosec10\frac{1}{8}\text{cosec}10{^\circ}

D

18sec10\frac{1}{8}\sec 10{^\circ}

Answer

18cot10\frac{1}{8}\cot 10{^\circ}

Explanation

Solution

x=cos10ocos20ocos40ox = \cos{}10^{o}\cos{}20^{o}\cos{}40^{o}

=12sin10o[2sin10ocos10ocos20ocos40o]= \frac{1}{2\sin 10^{o}}\lbrack 2\sin{}10^{o}\cos{}10^{o}\cos{}20^{o}\cos{}40^{o}\rbrack

=12.2sin10o[2sin20ocos20ocos40o]= \frac{1}{2.2\sin 10^{o}}\lbrack 2\sin{}20^{o}\cos{}20^{o}\cos{}40^{o}\rbrack

=12.4sin10o[2sin40ocos40o)=18sin10o(sin80o)= \frac{1}{2.4\sin 10^{o}}\lbrack 2\sin 40^{o}\cos 40^{o}) = \frac{1}{8\sin 10^{o}}(\sin 80^{o})

=18sin10ocos10o=18cot10o= \frac{1}{8\sin 10^{o}}\cos{}10^{o} = \frac{1}{8}\cot{}10^{o}.