Solveeit Logo

Question

Mathematics Question on Matrices

If x [2\3]\begin{bmatrix}2\\\3\end{bmatrix}+y [1\1]\begin{bmatrix}-1\\\1\end{bmatrix}=[10\5]\begin{bmatrix}10\\\5\end{bmatrix},find values of x and y.

Answer

x [2\3]\begin{bmatrix}2\\\3\end{bmatrix}+y [1\1]\begin{bmatrix}-1\\\1\end{bmatrix}=[10\5]\begin{bmatrix}10\\\5\end{bmatrix}

[2x\3x]+[y\y]\Rightarrow \begin{bmatrix}2x\\\3x\end{bmatrix}+\begin{bmatrix}-y\\\y\end{bmatrix}=[10\5]\begin{bmatrix}10\\\5\end{bmatrix}

[2xy\3x+y]\Rightarrow \begin{bmatrix}2x-y\\\3x+y\end{bmatrix}=[10\5]\begin{bmatrix}10\\\5\end{bmatrix}

Comparing the corresponding elements of these two matrices, we get:
2x − y = 10 and 3x + y = 5
Adding these two equations, we have:
5x = 15
\Rightarrow x = 3
Now, 3x + y = 5
\Rightarrow y = 5 − 3x
\Rightarrow y = 5 − 9 = −4

∴x = 3 and y = −4