Solveeit Logo

Question

Question: If ƒ(x) = ax<sup>3</sup> + bx<sup>2</sup> + cx + d where a, b, c, d are real numbers and 3b<sup>2</s...

If ƒ(x) = ax3 + bx2 + cx + d where a, b, c, d are real numbers and 3b2< c2, is an increasing cubic function and

g(x) = aƒ′(x) + bƒ′′(x) + c2, then –

A

axg(t)\int_{a}^{x}{g(t)}dt is a decreasing function

B

axg(t)\int_{a}^{x}{g(t)}dt is an increasing function

C

axg(t)\int_{a}^{x}{g(t)} dt is a neither increasing nor decreasing function

D

None of the above

Answer

axg(t)\int_{a}^{x}{g(t)}dt is an increasing function

Explanation

Solution

ƒ′(x) = 3ax2 + 2bx + c > 0 (since ƒ(x) is increasing)

⇒ a > 0 and b2 – 3ac < 0

⇒ a > 0 and b2 < 3ac

also, g(x) = aƒ′(x) + bƒ′′(x) + c2

g(x) = 3a2x2 + 2abx + ac + 6abx + 2b2 + c2

g(x) = 3a2x2 + 8abx + (2b2 + c2 + ac)

where D = 64a2b2 – 4 · 3a2 · (2b2 + c2 + ac)

= 4a2 (16b2 – 6b2 – 3c2 – 3ac)

= 4a2 (10b2 – 3c2– 3ac) < 4a2 (10b2 – 3c2 – b2)

{as 3ac > b2 ⇒ – 3ac < – b2}

= 4a2 (9b2 – 3c2)

= 12a2 (3b2 – c2) {given 3b2 < c2}

∴ D > 0

⇒ g(x) < 0, ∀ x ∈ R

0xg(t)\int_{0}^{x}{g(t)} dt is an increasing function.

Hence (2) is the correct answer.