Question
Question: If (x) = ax<sup>3</sup> + bx<sup>2</sup> + cx + d where a, b, c, d are real numbers and 3b<sup>2</s...
If (x) = ax3 + bx2 + cx + d where a, b, c, d are real numbers and 3b2< c2, is an increasing cubic function and
g(x) = a′(x) + b′′(x) + c2, then –
∫axg(t)dt is a decreasing function
∫axg(t)dt is an increasing function
∫axg(t) dt is a neither increasing nor decreasing function
None of the above
∫axg(t)dt is an increasing function
Solution
′(x) = 3ax2 + 2bx + c > 0 (since (x) is increasing)
⇒ a > 0 and b2 – 3ac < 0
⇒ a > 0 and b2 < 3ac
also, g(x) = a′(x) + b′′(x) + c2
g(x) = 3a2x2 + 2abx + ac + 6abx + 2b2 + c2
g(x) = 3a2x2 + 8abx + (2b2 + c2 + ac)
where D = 64a2b2 – 4 · 3a2 · (2b2 + c2 + ac)
= 4a2 (16b2 – 6b2 – 3c2 – 3ac)
= 4a2 (10b2 – 3c2– 3ac) < 4a2 (10b2 – 3c2 – b2)
{as 3ac > b2 ⇒ – 3ac < – b2}
= 4a2 (9b2 – 3c2)
= 12a2 (3b2 – c2) {given 3b2 < c2}
∴ D > 0
⇒ g(x) < 0, ∀ x ∈ R
∴ ∫0xg(t) dt is an increasing function.
Hence (2) is the correct answer.