Solveeit Logo

Question

Mathematics Question on Differential Equations

If x=at4x = at^4 and y=2at2y = 2at^2, then d2ydx2\frac{d^2y}{dx^2} is equal to:

A

14at4-\frac{1}{4at^4}

B

2t3-\frac{2}{t^3}

C

1t-\frac{1}{t}

D

12at6-\frac{1}{2at^6}

Answer

12at6-\frac{1}{2at^6}

Explanation

Solution

Given x=at4x = at^4 and y=2at2y = 2at^2, differentiate yy with respect to tt to find dydx\frac{dy}{dx}.

First, compute dxdt\frac{dx}{dt} and dydt\frac{dy}{dt}:

dxdt=4at3,dydt=4at.\frac{dx}{dt} = 4at^3, \quad \frac{dy}{dt} = 4at.

Using the chain rule:

dydx=dydtdxdt=4at4at3=1t2.\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{4at}{4at^3} = \frac{1}{t^2}.

Next, differentiate dydx\frac{dy}{dx} with respect to tt:

d2ydx2=ddt(1t2)×dtdx.\frac{d^2y}{dx^2} = \frac{d}{dt} \left( \frac{1}{t^2} \right)\times \frac{dt}{dx}.

ddt(1t2)=2t3,dtdx=14at3.\frac{d}{dt} \left( \frac{1}{t^2} \right) = -\frac{2}{t^3}, \quad \frac{dt}{dx} = \frac{1}{4at^3}.

Substitute these values:

d2ydx2=2t3×14at3=12at6.\frac{d^2y}{dx^2} = -\frac{2}{t^3} \times \frac{1}{4at^3} = -\frac{1}{2at^6}.

Hence, the correct answer is Option (D).