Solveeit Logo

Question

Quantitative Aptitude Question on Algebra

If xx and yy satisfy the equations
x+x+y=15(1),|x| + x + y = 15 \quad \text{(1)},
x+yy=20(2).x + |y| - y = 20 \quad \text{(2)}.
Find the value of xyx - y.

Answer

Step 1: Analyze the first equation x+x+y=15|x| + x + y = 15}

The behavior of x|x| depends on the sign of xx:

  • If x0x \geq 0, then x=x|x| = x. Substituting this into Equation (1):
    x+x+y=15    2x+y=15.(3)x + x + y = 15 \implies 2x + y = 15. \quad \text{(3)}
  • If x<0x < 0, then x=x|x| = -x. Substituting this into Equation (1):
    x+x+y=15    y=15.(4)-x + x + y = 15 \implies y = 15. \quad \text{(4)}

Step 2 : Analyze the second equation x+yy=20x + |y| - y = 20}

The behavior of y|y| depends on the sign of yy:

  • If y0y \geq 0, then y=y|y| = y. Substituting this into Equation (2):
    x+yy=20    x=20.(5)x + y - y = 20 \implies x = 20. \quad \text{(5)}
  • If y<0y < 0, then y=y|y| = -y. Substituting this into Equation (2):
    xyy=20    x2y=20.(6)x - y - y = 20 \implies x - 2y = 20. \quad \text{(6)}

Step 3 : Solve the equations for different cases

Case 1 : x0x \geq 0 and y0y \geq 0

From Equation (3):
2x+y=15.2x + y = 15.

From Equation (5):
x=20.x = 20.

Substitute x=20x = 20 into 2x+y=152x + y = 15:
2(20)+y=15    40+y=15    y=25.2(20) + y = 15 \implies 40 + y = 15 \implies y = -25.

This violates the assumption y0y \geq 0. Thus, this case is not valid.

Case 2: x0x \geq 0 and y<0y < 0

From Equation (3):
2x+y=15.2x + y = 15.

From Equation (6):
x2y=20.x - 2y = 20.

Solve these two equations simultaneously:
1. From 2x+y=152x + y = 15, express yy in terms of xx:
y=152x.(7)y = 15 - 2x. \quad \text{(7)}

2. Substitute y=152xy = 15 - 2x into x2y=20x - 2y = 20:
x2(152x)=20.x - 2(15 - 2x) = 20.

Simplify:
x30+4x=20    5x30=20    5x=50    x=10.x - 30 + 4x = 20 \implies 5x - 30 = 20 \implies 5x = 50 \implies x = 10.

Substitute x=10x = 10 into y=152xy = 15 - 2x:
y=152(10)=1520=5.y = 15 - 2(10) = 15 - 20 = -5.

** Step 4**: Calculate xyx - y
From the above, x=10x = 10 and y=5y = -5.
Thus: xy=10(5)=10+5=15.x - y = 10 - (-5) = 10 + 5 = 15.
Final Answer: xy=15.x - y = 15.