Solveeit Logo

Question

Mathematics Question on Probability

If xx and yy are two real numbers such that x+y=1x + y = 1 and x3+y3=4,x^3 + y^3 = 4, then x5+y5x^5 + y^5 is

A

10

B

9

C

12

D

11

Answer

11

Explanation

Solution

We have, x+y=1(x+y)2=1x + y = 1 \Rightarrow (x + y)2 = 1
x2+y2+2xy=1\Rightarrow x^2 + y^2 + 2xy = 1 ... (i)
Also, x3+y3=4(x+y)(x2xy+y2)=4x^3 + y^3 = 4 \Rightarrow (x + y)(x^2 - xy + y^2) = 4
x2xy+y2=4x^2 - xy + y^2 = 4 ... (ii)
Subtracting (ii) from (i), we get
x2+y2+2xyx2+xyy2=14x^2 + y^2 + 2xy - x^2 + xy - y^2 = 1 - 4
3xy=3xy=1\Rightarrow 3xy = -3 \Rightarrow xy = -1
(x+y)2(x3+y3)=(x2+y2+2xy)(x3+y3)(x + y)^2 (x^3 + y^3) = (x^2 + y^2 + 2xy)(x^3 + y^3)
(1).(4)=x5+x2y3+y2x3+y5+2.x4y+2xy4(1).(4) = x^5 + x^2y^3 + y^2x^3 + y^5 + 2.x^4y + 2xy^4
x5+y5=4x2y3y2x32x4y2xy4x^5 + y^5 = 4 - x^2y^3 - y^2x^3 - 2x^4y - 2xy^4
=4x2y2[y+x]2xy[x3+y3]= 4- x^2y^2 [y + x] - 2xy[x^3 + y^3]
=4x2y22xy(4)=4(1)22(1)(4)= 4- x^2y^2- 2xy (4) = 4 - (-1)2- 2(-1)(4)
x5+y5=41+8=11.\Rightarrow x^5+y^5=4-1+8=11.