Solveeit Logo

Question

Mathematics Question on Probability

If XX and YY are two events such that P(XY)=12,P(XY)=13.andP(XY)16P (X | Y )=\frac{1}{2}, P(X | Y)=\frac{1}{3.} \, and \, P(X \cap Y)\frac{1}{6} Then, which of the following is/are correct?

A

P(XY)=23P(X \cup Y) = \frac {2}{3}

B

XX and YY are independent

C

XX and YY are not independent

D

P(XcY)=13P(X^c \cap Y) = \frac{1}{3}

Answer

XX and YY are independent

Explanation

Solution

PLAN
(i) Conditional probability, i.e. P(A/B)=P(AB)P(B)P(A/B) =\frac{P(A \cap B)}{P(B)}
(ii) P(AB)=P(A)+P(B)P(AB)P (A \cup B) = P(A) + P(B) -P (A \cup B)
(iii) Independent event, then P(AB)=P(A)P(B)P(A \cap B) = P(A)-P(B)
Here, P(X/Y)=12,P(YX)=13P(X/Y) =\frac{1}{2}, P\bigg(\frac{Y}{X}\bigg)=\frac{1}{3} and P(XY)=6 P(X \cap \, Y)=6
P(xy)=P(XY)P(Y)\therefore \, \, \, \, \, \, P\bigg(\frac{x}{y}\bigg) =\frac{P(X \cap Y)}{P(Y)}
12=1/6P(Y)P(Y)=13\Rightarrow \, \, \, \, \, \, \, \frac{1}{2}=\frac{1/6}{P(Y)} \, \, \Rightarrow \, \, P(Y)=\frac{1}{3} \, \, \, \, \, \, \, ....( i)
P(YX)=13P(XY)P(X)=13\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, P\bigg(\frac{Y}{X})=\frac{1}{3} \, \, \Rightarrow \, \, \frac{P(X \cap Y)}{P(X)}=\frac{1}{3}
16=13P(X)\Rightarrow \, \, \, \, \, \, \frac{1}{6}=\frac{1}{3}P(X)
P(X)=12\therefore \, \, \, \, \, P(X)=\frac{1}{2} \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, ...(ii)
P(XY)=P(X)+P(Y)P(XY)P(X \cup Y ) = P(X) + P(Y) - P ( X \cap Y )
=12+1316=23\, \, \, \, \, \, \, \, \, = \frac{1}{2}+\frac{1}{3}-\frac{1}{6}=\frac{2}{3} \, \, \, \, \, \, \, \, \, \, \, \, \, ...(iii)
P(XY)=16P(X \cap Y)=\frac{1}{6} and P(X).P(Y)=12.13=16 \, P(X).P(Y)=\frac{1}{2}.\frac{1}{3}=\frac{1}{6}
P(XY)=P(X).P(Y)\Rightarrow \, \, \, \, P(X \cap Y) = P(X).P(Y)
i.e. independent events
P(XcY)=P(Y)P(XY)\therefore \, \, \, \, \, \, P(X^c \cap Y)=P(Y)-P(X \cap Y)
1316=16\frac{1}{3}-\frac{1}{6}=\frac{1}{6}