Solveeit Logo

Question

Question: If X and Y are the independent binomial variates \[B\left( {5,\dfrac{1}{2}} \right)\] and\[B\left( {...

If X and Y are the independent binomial variates B(5,12)B\left( {5,\dfrac{1}{2}} \right) andB(7,12)B\left( {7,\dfrac{1}{2}} \right), then P(X+Y=3)P\left( {X + Y = 3} \right) is equal to
A. 3547\dfrac{{35}}{{47}}
B. 551024\dfrac{{55}}{{1024}}
C. 220512\dfrac{{220}}{{512}}
D. 11204\dfrac{{11}}{{204}}

Explanation

Solution

From the given we are asked to find the valueP(X+Y=3)P\left( {X + Y = 3} \right). For that, we will first find all the possible values of XXand YY from the equation X+Y=3X + Y = 3then we will find the values P(X=r)P\left( {X = r} \right)andP(Y=r)P\left( {Y = r} \right). Then we will make use of these to find the value ofP(X+Y=3)P\left( {X + Y = 3} \right).

Formula Used: Some formulas that we need to know before solving this problem:
nCr=n!r!(nr)!^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}
nC0=1^n{C_0} = 1

Complete step-by-step solution:
It is given that XX and YY are the two independent binomial variates B(5,12)B\left( {5,\dfrac{1}{2}} \right) andB(7,12)B\left( {7,\dfrac{1}{2}} \right). We aim to find the value ofP(X+Y=3)P\left( {X + Y = 3} \right). First, we need to find the possible values of X and Y from the equationX+Y=3X + Y = 3.
Consider the equationX+Y=3X + Y = 3, if X=0X = 0thenY=3Y = 3.
If X=1X = 1thenY=2Y = 2.
If X=2X = 2thenY=1Y = 1.
If X=3X = 3thenY=0Y = 0.
Now we got all the possible values of X and Y. Let us find P(X=r)P\left( {X = r} \right)andP(Y=r)P\left( {Y = r} \right).
Here it is given that B(5,12)B\left( {5,\dfrac{1}{2}} \right) andB(7,12)B\left( {7,\dfrac{1}{2}} \right). Thus, we get
P\left( {X = r} \right) = $$$$^5{C_r}{\left( {\dfrac{1}{2}} \right)^r}{\left( {\dfrac{1}{2}} \right)^{5 - r}} = $$$$^5{C_r}{\left( {\dfrac{1}{2}} \right)^5}………….(1)(1)
P\left( {Y = r} \right) = $$$$^7{C_r}{\left( {\dfrac{1}{2}} \right)^7}…………….(2)(2)
Now let us find the value of P(X+Y=3)P\left( {X + Y = 3} \right)
P(X+Y=3)=P(X=0)P(Y=3)+P(X=1)P(Y=2)+P(X=2)P(Y=1)+P(X=3)P(Y=0)P\left( {X + Y = 3} \right) = P\left( {X = 0} \right)P\left( {Y = 3} \right) + P\left( {X = 1} \right)P\left( {Y = 2} \right) + P\left( {X = 2} \right)P\left( {Y = 1} \right) + P\left( {X = 3} \right)P\left( {Y = 0} \right)
Using the equations (1)\left( 1 \right)and(2)(2) the above expression can be written as
= $$$$^5{C_0}{\left( {\dfrac{1}{2}} \right)^5}{.^7}{C_3}{\left( {\dfrac{1}{2}} \right)^7} + {{\text{ }}^5}{C_1}{\left( {\dfrac{1}{2}} \right)^5}{.^7}{C_2}{\left( {\dfrac{1}{2}} \right)^7} + {{\text{ }}^5}{C_2}{\left( {\dfrac{1}{2}} \right)^5}{.^7}{C_1}{\left( {\dfrac{1}{2}} \right)^7} + {{\text{ }}^5}{C_3}{\left( {\dfrac{1}{2}} \right)^5}{.^7}{C_0}{\left( {\dfrac{1}{2}} \right)^7}
Let us take (12)12{\left( {\dfrac{1}{2}} \right)^{12}}commonly out from the above expression.
=(12)12[5C0.7C3+ 5C1.7C2+ 5C2.7C1+ 5C3.7C0]= {\left( {\dfrac{1}{2}} \right)^{12}}\left[ {^5{C_0}{.^7}{C_3} + {{\text{ }}^5}{C_1}{.^7}{C_2} + {{\text{ }}^5}{C_2}{.^7}{C_1} + {{\text{ }}^5}{C_3}{.^7}{C_0}} \right]
On simplifying this using, the formulas nCr=n!r!(nr)!^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}and nC0=1^n{C_0} = 1we get
=(12)12[1×7×6×56+5×7×62+5×42×7+5×42×1]= {\left( {\dfrac{1}{2}} \right)^{12}}\left[ {1 \times \dfrac{{7 \times 6 \times 5}}{6} + 5 \times \dfrac{{7 \times 6}}{2} + \dfrac{{5 \times 4}}{2} \times 7 + \dfrac{{5 \times 4}}{2} \times 1} \right]
On simplifying it further we get
YY
Let us simplify it even more
=1212×220= \dfrac{1}{{{2^{12}}}} \times 220
=1212×220= \dfrac{1}{{{2^{12}}}} \times 220
=55210= \dfrac{{55}}{{{2^{10}}}}
P(X+Y=3)=551024P\left( {X + Y = 3} \right) = \dfrac{{55}}{{1024}}
Thus, we have found the value ofP(X+Y=3)P\left( {X + Y = 3} \right). Now let us see the options to find the right answer.
Option (a) 3547\dfrac{{35}}{{47}}is an incorrect answer as we got P(X+Y=3)=551024P\left( {X + Y = 3} \right) = \dfrac{{55}}{{1024}}from our calculation.
Option (b) 551024\dfrac{{55}}{{1024}}is the correct answer as we got the same value in our calculation above.
Option (c) 220512\dfrac{{220}}{{512}}is an incorrect answer as we got P(X+Y=3)=551024P\left( {X + Y = 3} \right) = \dfrac{{55}}{{1024}}from our calculation.
Option (d) 11204\dfrac{{11}}{{204}}is an incorrect answer as we got P(X+Y=3)=551024P\left( {X + Y = 3} \right) = \dfrac{{55}}{{1024}}from our calculation.
Hence, option (b) 551024\dfrac{{55}}{{1024}}is the correct answer.

Note: In this problem, it is necessary to find the possible values of X and Y as we want them to find the value ofP(X+Y=3)P\left( {X + Y = 3} \right). We can also find the valuesP(X+Y=3)=P(X=0)P(Y=3)+P(X=1)P(Y=2)+P(X=2)P(Y=1)+P(X=3)P(Y=0)P\left( {X + Y = 3} \right) = P\left( {X = 0} \right)P\left( {Y = 3} \right) + P\left( {X = 1} \right)P\left( {Y = 2} \right) + P\left( {X = 2} \right)P\left( {Y = 1} \right) + P\left( {X = 3} \right)P\left( {Y = 0} \right) one by one separately to make our calculation easier.