Solveeit Logo

Question

Question: If x and y are related as \({{x}^{m}}{{y}^{n}}={{\left( x+y \right)}^{m+n}}\), then prove that \(\df...

If x and y are related as xmyn=(x+y)m+n{{x}^{m}}{{y}^{n}}={{\left( x+y \right)}^{m+n}}, then prove that d2ydx2=0\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=0.

Explanation

Solution

Hint: In this question, we are given the relation between x and y in terms of exponents, therefore, we should first try to take logarithms on both sides to convert the equation into a linear equation. Thereafter, we can use the properties of logarithm and the formula for derivative of logarithm to obtain the required answer.

Complete step-by-step solution -
The given relation is xmyn=(x+y)m+n{{x}^{m}}{{y}^{n}}={{\left( x+y \right)}^{m+n}}. Now, we know that for two numbers a and b, the properties of logarithmic functions are
log(ab)=blog(a)................(1.1)\log \left( {{a}^{b}} \right)=b\log \left( a \right)................(1.1)
And log(ab)=log(a)+log(b)................(1.2)\log \left( ab \right)=\log \left( a \right)+\log \left( b \right)................(1.2)
Also, the chain rule of derivatives states that for a function f depending on another function g of x
dfdx=dfdg×dgdx......................(1.3)\dfrac{df}{dx}=\dfrac{df}{dg}\times \dfrac{dg}{dx}......................(1.3)
Now, we can take logarithms on both sides of the given relation and then use equation (1.1) and equation (1.2) to obtain
log(xmyn)=log((x+y)m+n) log(xm)+log(yn)=(m+n)log(x+y) mlogx+nlogy=(m+n)log(x+y) \begin{aligned} & \log \left( {{x}^{m}}{{y}^{n}} \right)=\log \left( {{\left( x+y \right)}^{m+n}} \right) \\\ & \Rightarrow \log ({{x}^{m}})+\log ({{y}^{n}})=\left( m+n \right)\log \left( x+y \right) \\\ & \Rightarrow m\log x+n\log y=\left( m+n \right)\log \left( x+y \right) \\\ \end{aligned}
Now, we can take the derivative of both sides with respect to x and use the chain rule as in equation (1.3) with f as the logarithmic function and g as the function inside the parenthesis to obtain
d(mlogx+nlogy)dx=d((m+n)log(x+y))dx md(logx)dx+nd(logy)dx=(m+n)d(log(x+y))dx..............(1.4) \begin{aligned} & \dfrac{d\left( m\log x+n\log y \right)}{dx}=\dfrac{d\left( \left( m+n \right)\log \left( x+y \right) \right)}{dx} \\\ & \Rightarrow m\dfrac{d\left( \log x \right)}{dx}+n\dfrac{d\left( \log y \right)}{dx}=(m+n)\dfrac{d\left( \log \left( x+y \right) \right)}{dx}..............(1.4) \\\ \end{aligned}
Now, we can use the formula for derivatives of log function as
d(logx)dx=1x.................(1.5)\dfrac{d\left( \log x \right)}{dx}=\dfrac{1}{x}.................(1.5)
And d(logy)dx=d(logy)dy×dydx=1ydydx..............(1.6)\dfrac{d\left( \log y \right)}{dx}=\dfrac{d\left( \log y \right)}{dy}\times \dfrac{dy}{dx}=\dfrac{1}{y}\dfrac{dy}{dx}..............(1.6)
And then the chain rule to express d(log(x+y))dx=d(log(x+y))d(x+y)d(x+y)dx=d(log(x+y))d(x+y)×(d(x)dx+d(y)dx) d(log(x+y))dx=1(x+y)×(1+dydx)................(1.7) \begin{aligned} & \dfrac{d\left( \log \left( x+y \right) \right)}{dx}=\dfrac{d\left( \log \left( x+y \right) \right)}{d\left( x+y \right)}\dfrac{d\left( x+y \right)}{dx}=\dfrac{d\left( \log \left( x+y \right) \right)}{d\left( x+y \right)}\times \left( \dfrac{d\left( x \right)}{dx}+\dfrac{d\left( y \right)}{dx} \right) \\\ & \Rightarrow \dfrac{d\left( \log \left( x+y \right) \right)}{dx}=\dfrac{1}{\left( x+y \right)}\times \left( 1+\dfrac{dy}{dx} \right)................(1.7) \\\ \end{aligned}
Thus, using (1.5), (1.6) and (1.7) in equation (1.4), we get
md(logx)dx+nd(logy)dx=(m+n)d(log(x+y))dx m×1x+n×1y×dydx=(m+n)1(x+y)(1+dydx) \begin{aligned} & m\dfrac{d\left( \log x \right)}{dx}+n\dfrac{d\left( \log y \right)}{dx}=(m+n)\dfrac{d\left( \log \left( x+y \right) \right)}{dx} \\\ & \Rightarrow m\times \dfrac{1}{x}+n\times \dfrac{1}{y}\times \dfrac{dy}{dx}=\left( m+n \right)\dfrac{1}{\left( x+y \right)}\left( 1+\dfrac{dy}{dx} \right) \\\ \end{aligned}
Collecting dydx\dfrac{dy}{dx} into the left hand side and taking other terms into the Right Hand Side(RHS), we obtain
dydx×(nym+nx+y)=m+n(x+y)mx dydx×(n(x+y)y(m+n)y(x+y))=x(m+n)m(x+y)x(x+y) dydx×(nxymy(x+y))=xnymx(x+y)  \begin{aligned} & \dfrac{dy}{dx}\times \left( \dfrac{n}{y}-\dfrac{m+n}{x+y} \right)=\dfrac{m+n}{\left( x+y \right)}-\dfrac{m}{x} \\\ & \Rightarrow \dfrac{dy}{dx}\times \left( \dfrac{n(x+y)-y(m+n)}{y(x+y)} \right)=\dfrac{x(m+n)-m(x+y)}{x(x+y)} \\\ & \Rightarrow \dfrac{dy}{dx}\times \left( \dfrac{nx-ym}{y(x+y)} \right)=\dfrac{xn-ym}{x(x+y)} \\\ & \\\ \end{aligned}
Therefore, we can now cancel out xnymxn-ym from the numerator of both sides and (x+y)(x+y) from the denominator of both sides to get
dydx×1y=1x dydx=yx...................(1.8) \begin{aligned} & \dfrac{dy}{dx}\times \dfrac{1}{y}=\dfrac{1}{x} \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{y}{x}...................(1.8) \\\ \end{aligned}
We also know that the product and quotient rule of differentiation is given by

& \dfrac{d\left( uv \right)}{dx}=u\dfrac{dv}{dx}+v\dfrac{du}{dx}.....................(1.8a) \\\ & \dfrac{d\left( \dfrac{u}{v} \right)}{dx}=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}.................(1.8b) \\\ \end{aligned}$$ Taking u=1 in (1.8b), we obtain $\dfrac{d\left( \dfrac{1}{x} \right)}{dx}=\dfrac{x\times \dfrac{d\left( 1 \right)}{dx}-1\times \dfrac{d\left( x \right)}{dx}}{{{x}^{2}}}=\dfrac{-1}{{{x}^{2}}}.................(1.8c)$ Now, as we have to find the second order derivative, we can again differentiate (1.8) and use the quotient rule in (1.8b) to obtain $\begin{aligned} & \dfrac{dy}{dx}=\dfrac{y}{x} \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d\left( \dfrac{dy}{dx} \right)}{dx}=\dfrac{d\left( \dfrac{y}{x} \right)}{dx}=\dfrac{x\dfrac{dy}{dx}-y\dfrac{dx}{dx}}{{{x}^{2}}}=\dfrac{x\times \dfrac{y}{x}-y\times 1}{{{x}^{2}}}=\dfrac{y-y}{{{x}^{2}}}=0...................(1.9) \\\ \end{aligned}$ Where in the third term of the above equation, we have used $\dfrac{dy}{dx}=\dfrac{y}{x}$ and we have thus proved that $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=0$ which was asked in the question. Note: We should note that we could also have found out the derivatives without taking the logarithm in both sides as in equation (1.4), but using the formulas for the derivatives of the power of functions. However, the answer obtained in both the methods will be the same and the calculations would be more complicated than was done by using logarithms.