Solveeit Logo

Question

Quantitative Aptitude Question on Logarithms

If xx and yy are positive real numbers such that logx(x2+12)=4log_x(x^2+12)=4 and 3  logyx=13\;log_yx=1,then x+yx+y equals

A

11

B

20

C

10

D

68

Answer

10

Explanation

Solution

We have logx(x2+12)=4\log_x(x^2 + 12) = 4
x2+12=x4⇒ x ^2 +12=x ^4
x4x212=0⇒x^ 4 −x^ 2 −12=0
x2(x24)+3(x24)=0x^2(x^2 - 4) + 3(x^2 - 4) = 0
(x24)(x2+3)=0(x ^2 −4)(x^ 2 +3)=0
given that x is a positive real number, then x = 2.

Given 3logyx=13\log_y{x} = 1
logyx=13\log_y{x} = \frac{1}{3}
x=y13x = y^\frac{1}{3}
y=x3y=x^ 3
y=8.y = 8.
x+y=2+8=10.x + y = 2 + 8 = 10.