Solveeit Logo

Question

Quantitative Aptitude Question on Number Systems

If x and y are positive real numbers satisfying x+y=102x+y=102, then the minimum possible value of 2601(1+1x)(1+1y)2601(1+\frac 1x)(1+\frac 1y) is
[This Question was asked as TITA]

A

2432

B

2807

C

2704

D

2605

Answer

2704

Explanation

Solution

AMGMHMAM≥GM≥HM
x+y2xy21x+1y\frac {x+y}{2}≥\sqrt {xy}≥\frac {2}{\frac 1x+\frac 1y}
Given x+y=102x+y=102
xy512or1xy12601⇒ xy≤512 or \frac {1}{xy}≥\frac {1}{2601}

1x+1y251⇒ \frac 1x+\frac 1y≥\frac {2}{51}
The minimum value of 2601(1+1x)(1+1y)=(2601)(1+1x+1y+1xy)2601(1+\frac 1x)(1+\frac 1y)=(2601)(1+\frac 1x+\frac 1y+\frac {1}{xy})
=2601(1+251+12601)= 2601(1+\frac {2}{51}+\frac {1}{2601})
=2704= 2704

So, the correct option is (C): 2704