Solveeit Logo

Question

Quantitative Aptitude Question on Number Systems

If xx and yy are positive real numbers satisfying x+y=102x+y=102, then the minimum possible value of 2601(1+1x)(1+1y)2601\bigg(1+\frac{1}{x}\bigg)\bigg(1+\frac{1}{y}\bigg) is

Answer

AMGMHMAM≥GM≥HM

x+y2xy21x+1y\frac{x+y}{2}≥\sqrt{xy}≥\frac{2}{\frac{1}{x}+\frac{1}{y}}

Given x+y=102x+y=102

xy512  or  1xy12601⇒ xy≤51^2 \;or\; \frac{1}{xy}≥\frac{1}{2601}

1x+1y251⇒\frac{ 1}{x}+\frac{1}{y}≥\frac{2}{51}

The minimum value of 2601(1+1x)(1+1y)=(2601)(1+1x+1y+1xy)2601\bigg(1+\frac{1}{x}\bigg)\bigg(1+\frac{1}{y}\bigg)=(2601)\bigg(1+\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}\bigg)

= 2601(1+251+12601)2601\bigg(1+\frac{2}{51}+\frac{1}{2601}\bigg)

= 27042704