Question
Question: If \(X\) and \(Y\) are independent binomial variates \(B\left( 5,\dfrac{1}{2} \right)\) and \(B\left...
If X and Y are independent binomial variates B(5,21) and B(7,21), then find the value of P(X+Y=3). $$$$
A.P\left( X+Y=3 \right)=\dfrac{45}{1024}$$$$$
B. P\left( X+Y=3 \right)=\dfrac{65}{1024}
C. $P\left( X+Y=3 \right)=\dfrac{55}{1024}
D. P(X+Y=3)=102475$$$$
Solution
We recall the joint probability mass function for binomial variates P(X+Y=k)=a,b∑nCapn⋅mCbqm where n,m are the number of trials, p,q are the probabilities of successes of a single trial, a,b are the number of successes of the random variables X and Y respectively and k=a+b is the sum of number of successes. We can get k=3 successes if a=0,b=3 or a=2,b=1 or a=1,b=2 or a=3,b=0. $$$$
Complete step by step answer:
We know that if random variable X follows binomial distribution (X ~B(n,p)) with number of trials n∈N and probability of success p∈[0,1]the probability that we get k successes in n independent trials is given by the probability mass function,
P(X=k)=nCkpk(1−p)n−k
Let us consider two independent random variables X and Y follow binomial distribution with n and m trials with probability of success in one trial p and q then the probability mass function for total k successes with X and Y combined is given by ;
P(X+Y=k)=a,b∑nCapn⋅mCbqm
Here a is the number of successes of X within n trials and b is the number of successes of Y with m trials which means a+b=k$$$$$
We are given the question that XandYareindependentbinomialvariateswithbinomialdistribution.B\left( 5,\dfrac{1}{2} \right)andB\left( 7,\dfrac{1}{2} \right).SothenumberoftrialsforXisn=5andforYism=7.Theprobabilityofsuccessofasingletrialisp=q=\dfrac{1}{2}.WeareaskedtofindP\left( X+Y=3 \right)whichmeansweareaskedfortheprobabilitywegetk=3successesintheseparate(independent)trialsforXandY. $$$$
If we get a=0successforXandb=3successesforYthentheprobabilityfora+b=3+0=3=ksuccesses is;
$$P\left( X=0,Y=3 \right)={}^{5}{{C}_{0}}{{\left( \dfrac{1}{2} \right)}^{5}}{}^{7}{{C}_{3}}{{\left( \dfrac{1}{2} \right)}^{7}}=1\times \dfrac{1}{32}\times 35\times \dfrac{1}{32}=\dfrac{35}{4096}$$
If we geta=1successforXandb=2successesforYthentheprobabilityfora+b=1+2=3=ksuccesses is;
$$P\left( X=1,Y=2 \right)={}^{5}{{C}_{1}}{{\left( \dfrac{1}{2} \right)}^{5}}{}^{7}{{C}_{2}}{{\left( \dfrac{1}{2} \right)}^{7}}=5\times \dfrac{1}{32}\times 21\times \dfrac{1}{32}=\dfrac{105}{4096}$$
If we geta=2successforXandb=1successesforYthentheprobabilityfora+b=2+1=3=ksuccesses is;
$$P\left( X=2,Y=1 \right)={}^{5}{{C}_{2}}{{\left( \dfrac{1}{2} \right)}^{5}}{}^{7}{{C}_{1}}{{\left( \dfrac{1}{2} \right)}^{7}}=10\times \dfrac{1}{32}\times 7\times \dfrac{1}{32}=\dfrac{70}{4096}$$
If we geta=3successforXandb=0successesforYthentheprobabilityfora+b=0+3=3=ksuccesses is;
$$P\left( X=3,Y=0 \right)={}^{5}{{C}_{3}}{{\left( \dfrac{1}{2} \right)}^{5}}{}^{7}{{C}_{0}}{{\left( \dfrac{1}{2} \right)}^{7}}=5\times \dfrac{1}{32}\times 1\times \dfrac{1}{32}=\dfrac{10}{4096}$$
So the probability that we getk=3successesinindependentbivariateX,Y$ is ;