Solveeit Logo

Question

Question: If \(X\) and \(Y\) are independent binomial variates \(B\left( 5,\dfrac{1}{2} \right)\) and \(B\left...

If XX and YY are independent binomial variates B(5,12)B\left( 5,\dfrac{1}{2} \right) and B(7,12)B\left( 7,\dfrac{1}{2} \right), then find the value of P(X+Y=3)P\left( X+Y=3 \right). $$$$
A.P\left( X+Y=3 \right)=\dfrac{45}{1024}$$$$$ B. P\left( X+Y=3 \right)=\dfrac{65}{1024} C. $P\left( X+Y=3 \right)=\dfrac{55}{1024}
D. P(X+Y=3)=751024P\left( X+Y=3 \right)=\dfrac{75}{1024}$$$$

Explanation

Solution

We recall the joint probability mass function for binomial variates P(X+Y=k)=a,bnCapnmCbqmP\left( X+Y=k \right)=\sum\limits_{a,b}{{}^{n}{{C}_{a}}{{p}^{n}}\cdot {}^{m}{{C}_{b}}{{q}^{m}}} where n,mn,m are the number of trials, p,qp,q are the probabilities of successes of a single trial, a,ba,b are the number of successes of the random variables XX and YY respectively and k=a+bk=a+b is the sum of number of successes. We can get k=3k=3 successes if a=0,b=3a=0,b=3 or a=2,b=1a=2,b=1 or a=1,b=2a=1,b=2 or a=3,b=0a=3,b=0. $$$$

Complete step by step answer:
We know that if random variable XX follows binomial distribution (X ~B(n,p))\left( X\tilde{\ }B\left( n,p \right) \right) with number of trials nNn\in \mathsf{\mathbb{N}} and probability of success p[0,1]p\in \left[ 0,1 \right]the probability that we get kk successes in nn independent trials is given by the probability mass function,
P(X=k)=nCkpk(1p)nkP\left( X=k \right)={}^{n}{{C}_{k}}{{p}^{k}}{{\left( 1-p \right)}^{n-k}}
Let us consider two independent random variables XX and YY follow binomial distribution with nn and mm trials with probability of success in one trial pp and qq then the probability mass function for total kk successes with XX and YY combined is given by ;
P(X+Y=k)=a,bnCapnmCbqmP\left( X+Y=k \right)=\sum\limits_{a,b}{{}^{n}{{C}_{a}}{{p}^{n}}\cdot {}^{m}{{C}_{b}}{{q}^{m}}}
Here aa is the number of successes of XX within nn trials and bb is the number of successes of YY with mm trials which means a+b=k$$$$$ We are given the question that XandandYareindependentbinomialvariateswithbinomialdistribution.are independent binomial variates with binomial distribution.B\left( 5,\dfrac{1}{2} \right)andandB\left( 7,\dfrac{1}{2} \right).Sothenumberoftrialsfor. So the number of trials forXisisn=5andforand forYisism=7.Theprobabilityofsuccessofasingletrialis. The probability of success of a single trial is p=q=\dfrac{1}{2}.Weareaskedtofind. We are asked to find P\left( X+Y=3 \right)whichmeansweareaskedfortheprobabilitywegetwhich means we are asked for the probability we getk=3successesintheseparate(independent)trialsforsuccesses in the separate(independent ) trials forXandandY. $$$$ If we get a=0successforsuccess forXandandb=3successesforsuccesses forYthentheprobabilityforthen the probability fora+b=3+0=3=ksuccesses is; $$P\left( X=0,Y=3 \right)={}^{5}{{C}_{0}}{{\left( \dfrac{1}{2} \right)}^{5}}{}^{7}{{C}_{3}}{{\left( \dfrac{1}{2} \right)}^{7}}=1\times \dfrac{1}{32}\times 35\times \dfrac{1}{32}=\dfrac{35}{4096}$$ If we geta=1successforsuccess forXandandb=2successesforsuccesses forYthentheprobabilityforthen the probability fora+b=1+2=3=ksuccesses is; $$P\left( X=1,Y=2 \right)={}^{5}{{C}_{1}}{{\left( \dfrac{1}{2} \right)}^{5}}{}^{7}{{C}_{2}}{{\left( \dfrac{1}{2} \right)}^{7}}=5\times \dfrac{1}{32}\times 21\times \dfrac{1}{32}=\dfrac{105}{4096}$$ If we geta=2successforsuccess forXandandb=1successesforsuccesses forYthentheprobabilityforthen the probability fora+b=2+1=3=ksuccesses is; $$P\left( X=2,Y=1 \right)={}^{5}{{C}_{2}}{{\left( \dfrac{1}{2} \right)}^{5}}{}^{7}{{C}_{1}}{{\left( \dfrac{1}{2} \right)}^{7}}=10\times \dfrac{1}{32}\times 7\times \dfrac{1}{32}=\dfrac{70}{4096}$$ If we geta=3successforsuccess forXandandb=0successesforsuccesses forYthentheprobabilityforthen the probability fora+b=0+3=3=ksuccesses is; $$P\left( X=3,Y=0 \right)={}^{5}{{C}_{3}}{{\left( \dfrac{1}{2} \right)}^{5}}{}^{7}{{C}_{0}}{{\left( \dfrac{1}{2} \right)}^{7}}=5\times \dfrac{1}{32}\times 1\times \dfrac{1}{32}=\dfrac{10}{4096}$$ So the probability that we getk=3successesinindependentbivariatesuccesses in independent bivariateX,Y$ is ;

& P\left( X+Y=3 \right)=P\left( X=0,Y=3 \right)+P\left( X=0,Y=3 \right)+P\left( X=0,Y=3 \right)+P\left( X=0,Y=3 \right) \\\ & \Rightarrow P\left( X+Y=3 \right)=\dfrac{35}{4096}+\dfrac{105}{4096}+\dfrac{70}{4096}+\dfrac{10}{4096}=\dfrac{220}{4096}=\dfrac{55}{1024} \\\ \end{aligned}$$ **So, the correct answer is “Option C”.** **Note:** We note that binomial distribution is a discrete probability distribution which is defined for trials which returns a Boolean valued outcome. If $X$ and $Y$ are random variables then $X+Y$ is also a random variable. We can alternatively solve using the formula $P\left( X+Y=k \right)={}^{n+m}{{C}_{k}}{{p}^{k}}{{\left( 1-p \right)}^{n+m-k}}$ . We can two random variables $X,Y$ independent if $P\left( X=k,Y=l \right)=P\left( X=k \right)P\left( Y=l \right)$ .