Question
Mathematics Question on Continuity and differentiability
If x and y are connected parametrically by the equation,without eliminating the parameter,find dxdy.
x=a(cosθ+θsinθ),y=a(sinθ−θcosθ)
Answer
The correct answer is tanθ
The given equations are x=a(cosθ+θsinθ),y=a(sinθ−θcosθ)
Then,dθdx=a[dθd(cosθ)+dθd(θsinθ)=a[−sinθ+θdθd(sinθ)+sinθdθd(θ)
=a[−sinθ+θcosθ+sinθ]=aθcosθ
dθdy=a[dθd(sinθ)−dθd(θcosθ)=a[cosθ−θdθd(cosθ)+cosθ.dθd(θ)]
=a[cosθ+θsinθ−cosθ]=aθsinθ
∴dxdy=(dθdx)(dθdy)=aθcosθaθsinθ=tanθ