Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If xx and yy are connected parametrically by the equation,without eliminating the parameter,find dydx\frac{dy}{dx}.
x=asecθ,y=btanθx=a\,secθ,y=b\,tanθ

Answer

The correct answer is bacosecθ\frac{b}{a}cosecθ
The given equations are x=asecθ,y=btanθx=asecθ,y=btanθ
Then,dxdθ=a.ddθ(secθ)=asecθtanθ\frac{dx}{dθ}=a.\frac{d}{dθ}(secθ)=a\,secθ\,tanθ
dydθ=b.ddθ(tanθ)=bsec2θ\frac{dy}{dθ}=b.\frac{d}{dθ}(tan\,θ)=b\,sec2θ
dydx=(dydθ)(dxdθ)=bsec2θasecθtanθ∴\frac{dy}{dx}=\frac{(\frac{dy}{dθ})}{(\frac{dx}{dθ})}=\frac{b\,sec^2θ}{a\,secθ\,tanθ}
=basecθcotθ=bcosθacosθsinθ=ba×1sinθ=bacosecθ=\frac{b}{a}secθ\,cotθ=\frac{b\,cosθ}{a\,cosθ\,sinθ}=\frac{b}{a}\times \frac{1}{sinθ}=\frac{b}{a}cosecθ