Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If xx and yy are connected parametrically by the equation,without eliminating the parameter,find dydx\frac{dy}{dx}.
x=a(cost+logtant2),y=asintx=a(cos\,t+log\,tan\frac{t}{2}),y=a\,sint

Answer

The correct answer is tanttan\,t
The given equations are x=a(cost+logtant2),y=asintx=a(cos\,t+log\,tan\frac{t}{2}),y=a\,sint
Then,dxdt=a[ddt(cost)+ddt(logtant2)]\frac{dx}{dt}=a[\frac{d}{dt}(cost)+\frac{d}{dt}(log\,tan\frac{t}{2})]
=a[sint+1tant2.ddt(tant2)]=a[-sin\,t+\frac{1}{tan\frac{t}{2}}.\frac{d}{dt}(tan\frac{t}{2})]
=a[sint+cott2.sec2t2.ddt(t2)]=a[-sin\,t+cot\frac{t}{2}.sec^2\frac{t}{2}.\frac{d}{dt}(\frac{t}{2})]
=a[sint+cost2sint2×1cos2t2.12]=a[-sint+\frac{cos\frac{t}{2}}{sin\frac{t}{2}}\times \frac{1}{cos^2\frac{t}{2}}.\frac{1}{2}]
=a[sint+12sint2cost2]=a[-sint+\frac{1}{2sin\frac{t}{2}cos\frac{t}{2}}]
=a(sint+1sint)=a(-sint+\frac{1}{sint})
=a(sin2t+1sint)=a(\frac{-sin^2t+1}{sint})
=acos2tsint=a\frac{cos^2t}{sint}
dydt=addt(sint)=acost\frac{dy}{dt}=a\frac{d}{dt}(sint)=acost
dydx=(dydt)(dxdt)=acost(acos2tsint)∴\frac{dy}{dx}=\frac{(\frac{dy}{dt})}{(\frac{dx}{dt})}=\frac{acost}{(\frac{acos^2t}{sint})}
=sintcost=tant=\frac{sint}{cost}=tan\,t