Question
Mathematics Question on Continuity and differentiability
If x and y are connected parametrically by the equation,without eliminating the parameter,find dxdy.
x=cos2tsin3t,y=cos2tcos3t
The correct answer is =−cot3t
The given equations are x=cos2tsin3t,y=cos2tcos3t
Then,dtdx=dtdcos2tsin3t
=cos2tcos2t.dtd(sin3t)−sin3t.dtdcos2t
=cos2tcos2t.3sin2t.dtd(sint)−sin3t.2cos2t1dtd(cos2t)
=cos2t3cos2t.sin2tcost−2cos2tsin3t.(−2sin2t)
=cos2tcos2t3cos2tsin2tcost+sin3tsin2t
dtdy=dtd(cos2tcos3t)
=cos2tcos2t.dtd(cos3t)−cos3t.dtd(cos2t)
=cos2tcos2t.3cos2t.dtd(cost)−cos3t.2cos2t1.(−2sin2t)
=cos2t.cos2t−3cos2t.cos2t.sint+cos3tsin2t
∴dxdy=(dtdx)(dtdy)=3cos2tsin2tcost+sin3tsin2t−3cos2t.cos2t.sint+cos3tsin2t
3cos2tsin2tcost+sin3t(2sint.cost)−3cos2t.cos2t.sint+cos3t(2sint.cost)
=sintcost[3cos2tsint+2sin3t]sintcost[−3cos2tcost+2cos3t
=3(1−2sin2t)sint+2sin3t[−3(2cos2t−1)cost+2cos3t] [cos2t=(2cos2t−1),cos2t=(1=2sin2t)]
=3sint−4sin3t−4cos3t+3cost
=sin3t−cos3t [cos3t=4cos3t−3cost,sin3t=3sint−4sin3t]
=−cot3t