Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If xx and yy are connected parametrically by the equation,without eliminating the parameter,find dydx\frac{dy}{dx}.
x=sin3tcos2t,y=cos3tcos2tx=\frac{sin^3t}{\sqrt{cos\,2t}},y=\frac{cos^3t}{\sqrt{cos\,2t}}

Answer

The correct answer is =cot3t=-cot\,3t
The given equations are x=sin3tcos2t,y=cos3tcos2tx=\frac{sin^3t}{\sqrt{cos\,2t}},y=\frac{cos^3t}{\sqrt{cos\,2t}}
Then,dxdt=ddtsin3tcos2t\frac{dx}{dt}=\frac{d}{dt}\frac{sin^3t}{\sqrt{cos\,2t}}
=cos2t.ddt(sin3t)sin3t.ddtcos2tcos2t=\frac{\sqrt{cos\,2t}.\frac{d}{dt}(sin^3t)-sin^3t.\frac{d}{dt}\sqrt{cos\,2t}}{cos\,2t}
=cos2t.3sin2t.ddt(sint)sin3t.12cos2tddt(cos2t)cos2t=\frac{\sqrt{cos\,2t}.3sin^2t\,.\frac{d}{dt}(sin\,t)-sin^3t.\frac{1}{2\sqrt{cos2t}}\frac{d}{dt}(cos\,2t)}{cos\,2t}
=3cos2t.sin2tcostsin3t2cos2t.(2sin2t)cos2t=\frac{3\sqrt{cos2t}.sin^2t\,cost-\frac{sin^3t}{2\sqrt{cos2t}}.(-2sin2t)}{cos2t}
=3cos2tsin2tcost+sin3tsin2tcos2tcos2t=\frac{3cos\,2t\,sin^2t\,cost+sin^3t\,sin2t}{cos2t\sqrt{cos2t}}
dydt=ddt(cos3tcos2t)\frac{dy}{dt}=\frac{d}{dt}(\frac{cos^3t}{\sqrt{cos2t}})
=cos2t.ddt(cos3t)cos3t.ddt(cos2t)cos2t=\frac{\sqrt{cos\,2t}.\frac{d}{dt}(cos^3t)-cos^3t.\frac{d}{dt}(\sqrt{cos2t})}{cos2t}
=cos2t.3cos2t.ddt(cost)cos3t.12cos2t.(2sin2t)cos2t=\frac{\sqrt{cos\,2t}.3cos^2t.\frac{d}{dt}(cos\,t)-cos^3t.\frac{1}{2\sqrt{cos2t}}.(-2sin2t)}{cos2t}
=3cos2t.cos2t.sint+cos3tsin2tcos2t.cos2t=\frac{-3cos2t.cos^2t.sin\,t+cos^3t\,sin\,2t}{cos2t.\sqrt{cos2t}}
dydx=(dydt)(dxdt)=3cos2t.cos2t.sint+cos3tsin2t3cos2tsin2tcost+sin3tsin2t∴\frac{dy}{dx}=\frac{(\frac{dy}{dt})}{(\frac{dx}{dt})}=\frac{-3cos2t.cos^2t.sint+cos^3t\,sin\,2t}{3cos\,2t\,sin^2t\,cos\,t+sin^3t\,sin2t}
3cos2t.cos2t.sint+cos3t(2sint.cost)3cos2tsin2tcost+sin3t(2sint.cost)\frac{-3cos2t.cos^2t.sint+cos^3t\,(2sint.cost)}{3cos\,2t\,sin^2t\,cos\,t+sin^3t\,(2sint.cost)}
=sintcost[3cos2tcost+2cos3tsintcost[3cos2tsint+2sin3t]=\frac{sin\,t\,cos\,t[-3cos2tcost+2cos^3t}{sint\,cost[3cos2t\,sint+2sin^3t]}
=[3(2cos2t1)cost+2cos3t]3(12sin2t)sint+2sin3t=\frac{[-3(2cos^2t-1)cost+2cos^3t]}{3(1-2sin^2t)sint+2sin^3t} [cos2t=(2cos2t1),cos2t=(1=2sin2t)]\bigg[cos2t=(2cos^2t-1),cos2t=(1=2sin^2t)\bigg]
=4cos3t+3cost3sint4sin3t=\frac{-4cos^3t+3cost}{3sint-4sin^3t}
=cos3tsin3t=\frac{-cos3t}{sin3t} [cos3t=4cos3t3cost,sin3t=3sint4sin3t][cos3t=4cos^3t-3cost,sin3t=3sint-4sin^3t]
=cot3t=-cot\,3t