Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If xx and yy are connected parametrically by the equation,without eliminating the parameter,find dydx\frac{dy}{dx}.
x=a(θsinθ),y=a(1+cosθ)x=a(θ-sin\,θ),y=a(1+cos\,θ)

Answer

The correct answer is cotθ2-cot\frac{θ}{2}
The given equations are x=a(θsinθ),y=a(1+cosθ)x=a(θ-sin\,θ),y=a(1+cos\,θ)
Then,dxdθ=a[ddθ(θ)ddθ(sinθ)]=a(1cosθ)\frac{dx}{dθ}=a[\frac{d}{dθ}(θ)-\frac{d}{dθ}(sin\,θ)]=a(1-cos\,θ)
dydθ=a[ddθ(1)+ddθ(cosθ)]=a[0+(sinθ)]=asinθ\frac{dy}{dθ}=a[\frac{d}{dθ}(1)+\frac{d}{dθ}(cos\,θ)]=a[0+(-sin\,θ)]=-asin\,θ
∴\frac{dy}{dx}=\frac{(\frac{dy}{dθ})}{(\frac{dx}{dθ})}=\frac{-asin\,θ}{a(1-cos\,θ)}=\frac{-2sin\,\frac{θ}{2}cos\,\frac{θ}{2}}{2sin^2\frac{θ}{2}}$$=\frac{-cos\frac{θ}{2}}{sin\frac{θ}{2}}=-cot\frac{θ}{2}