Question
Mathematics Question on Continuity and differentiability
If x and y are connected parametrically by the equation,without eliminating the parameter,find dxdy.
x=a(θ−sinθ),y=a(1+cosθ)
Answer
The correct answer is −cot2θ
The given equations are x=a(θ−sinθ),y=a(1+cosθ)
Then,dθdx=a[dθd(θ)−dθd(sinθ)]=a(1−cosθ)
dθdy=a[dθd(1)+dθd(cosθ)]=a[0+(−sinθ)]=−asinθ
∴\frac{dy}{dx}=\frac{(\frac{dy}{dθ})}{(\frac{dx}{dθ})}=\frac{-asin\,θ}{a(1-cos\,θ)}=\frac{-2sin\,\frac{θ}{2}cos\,\frac{θ}{2}}{2sin^2\frac{θ}{2}}$$=\frac{-cos\frac{θ}{2}}{sin\frac{θ}{2}}=-cot\frac{θ}{2}