Question
Mathematics Question on Continuity and differentiability
If x and y are connected parametrically by the equation,without eliminating the parameter,find dxdy.
x=cosθ−cos2θ,y=sinθ−sin2θ
Answer
The correct answer is 2sin2θ−sinθcosθ−2cos2θ
The given equations are x=cosθ−cos2θ,y=sinθ−sin2θ
Then,dθdx=dθd(cosθ−cos2θ)=dθd(cosθ)−dθd(cos2θ)
=−sinθ−(−2sin2θ)=2sin2θ−sinθ
dθdy=dθd(sinθ−sin2θ)=dθd(sinθ)−dθd(sin2θ)
=cosθ−2cos2θ
∴dxdy=(dθdx)(dθdy)=2sin2θ−sinθcosθ−2cos2θ