Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If xx and yy are connected parametrically by the equation,without eliminating the parameter,find dydx\frac{dy}{dx}.
x=cosθcos2θ,y=sinθsin2θx=cos\,θ-cos2θ,y=sin\,θ-sin2θ

Answer

The correct answer is cosθ2cos2θ2sin2θsinθ\frac{cos\,θ-2cos\,2θ}{2sin\,2θ-sin\,θ}
The given equations are x=cosθcos2θ,y=sinθsin2θx=cos\,θ-cos2θ,y=sin\,θ-sin2θ
Then,dxdθ=ddθ(cosθcos2θ)=ddθ(cosθ)ddθ(cos2θ)\frac{dx}{dθ}=\frac{d}{dθ}(cos\,θ-cos\,2θ)=\frac{d}{dθ}(cos\,θ)-\frac{d}{dθ}(cos\,2θ)
=sinθ(2sin2θ)=2sin2θsinθ=-sinθ-(-2sin\,2θ)=2sin\,2θ-sin\,θ
dydθ=ddθ(sinθsin2θ)=ddθ(sinθ)ddθ(sin2θ)\frac{dy}{dθ}=\frac{d}{dθ}(sinθ-sin\,2θ)=\frac{d}{dθ}(sin\,θ)-\frac{d}{dθ}(sin\,2θ)
=cosθ2cos2θ=cos\,θ-2cos\,2θ
dydx=(dydθ)(dxdθ)=cosθ2cos2θ2sin2θsinθ∴\frac{dy}{dx}=\frac{(\frac{dy}{dθ})}{(\frac{dx}{dθ})}=\frac{cos\,θ-2cos\,2θ}{2sin\,2θ-sin\,θ}