Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If xx and yy are connected parametrically by the equation,without eliminating the parameter,find dydx\frac{dy}{dx}.
x=4t,y=4tx=4t,y=\frac{4}{t}

Answer

The correct answer is 1t2\frac{-1}{t^2}
The given equations are x=4t,y=4tx=4t,y=\frac{4}{t}
Then,dxdt=ddt(4t)=4\frac{dx}{dt}=\frac{d}{dt}(4t)=4
dydt=ddt(4t)=4.ddt(1t)=4.(1t2)=4t2\frac{dy}{dt}=\frac{d}{dt}(\frac{4}{t})=4.\frac{d}{dt}(\frac{1}{t})=4.(\frac{-1}{t^2})=\frac{-4}{t^2}
dydx=(dydt)(dxdt)=4t24=1t2∴\frac{dy}{dx}=\frac{(\frac{dy}{dt})}{(\frac{dx}{dt})}=\frac{\frac{-4}{t^2}}{4}=\frac{-1}{t^2}