Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If xx and yy are connected parametrically by the equation,without eliminating the parameter,find dydx\frac{dy}{dx}.
x=acosθ,y=bcosθx= a\,cos\,θ,y=b\,cos\,θ

Answer

The correct answer is dydx=(dydθ)(dxdθ)=bsinθasinθ=ba∴\frac{dy}{dx}=\frac{(\frac{dy}{dθ})}{(\frac{dx}{dθ})}=\frac{-bsinθ}{-asinθ}=\frac{b}{a}
The given equations are x=acosθ,y=bcosθx= a\,cos\,θ,y=b\,cos\,θ
Then,dxdθ=ddθ(acosθ)=a(sinθ))=asinθ\frac{dx}{dθ}=\frac{d}{dθ}(a\,cos\,θ)=a(-sin\,θ))=-a\,sin\,θ
dydθ=ddθ(bcosθ)=b(sinθ)=bsinθ\frac{dy}{dθ}=\frac{d}{dθ}(b\,cos\,θ)=b(-sinθ)=-bsinθ
dydx=(dydθ)(dxdθ)=bsinθasinθ=ba∴\frac{dy}{dx}=\frac{(\frac{dy}{dθ})}{(\frac{dx}{dθ})}=\frac{-bsinθ}{-asinθ}=\frac{b}{a}