Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If xx and yy are connected parametrically by the equation,without eliminating the parameter,find dydx.\frac{dy}{dx}.
x=2at2,y=at4x=2at^2,y=at^4

Answer

The correct answer is dydx=(dydt)(dxdt)=4at34at=t2∴\frac{dy}{dx}=\frac{(\frac{dy}{dt})}{(\frac{dx}{dt})}=\frac{4at^3}{4at}=t^2
The given equations are x=2at2,y=at4x=2at^2,y=at^4
Then,dxdt=ddt(2at2)=2a.ddt(t2)=2a.2t=4at\frac{dx}{dt}=\frac{d}{dt}(2at^2)=2a.\frac{d}{dt}(t^2)=2a.2t=4at
dydt=ddt(at4)=a.ddt(t4)=a.4.t3=4at3\frac{dy}{dt}=\frac{d}{dt}(at^4)=a.\frac{d}{dt}(t^4)=a.4.t^3=4at^3
dydx=(dydt)(dxdt)=4at34at=t2∴\frac{dy}{dx}=\frac{(\frac{dy}{dt})}{(\frac{dx}{dt})}=\frac{4at^3}{4at}=t^2