Solveeit Logo

Question

Mathematics Question on Matrices

If XX and YY are 2×22\times 2 matrices such that 2X+3Y=O2X+3Y=O and X+2Y=I,X+2Y=I, where OO and II denote the 2×22\times 2 zero matrix and the 2×22\times 2 identity matrix, then XX is equal to

A

[10 01 ]\left[ \begin{matrix} 1 & 0 \\\ 0 & 1 \\\ \end{matrix} \right]

B

[20 02 ]\left[ \begin{matrix} 2 & 0 \\\ 0 & 2 \\\ \end{matrix} \right]

C

[30 03 ]\left[ \begin{matrix} -3 & 0 \\\ 0 & -3 \\\ \end{matrix} \right]

D

[30 03 ]\left[ \begin{matrix} 3 & 0 \\\ 0 & 3 \\\ \end{matrix} \right]

Answer

[30 03 ]\left[ \begin{matrix} -3 & 0 \\\ 0 & -3 \\\ \end{matrix} \right]

Explanation

Solution

Given, 2X+3Y=O2X+3Y=O .....(i) and X+2Y=IX+2Y=I ..(ii)
Where O=[00 00 ]O=\left[ \begin{matrix} 0 & 0 \\\ 0 & 0 \\\ \end{matrix} \right] and I=[10 01 ]I=\left[ \begin{matrix} 1 & 0 \\\ 0 & 1 \\\ \end{matrix} \right]
On solving Eqs. (i) and (ii), we get
X=3I=[30 03 ]X=-3I=\left[ \begin{matrix} -3 & 0 \\\ 0 & -3 \\\ \end{matrix} \right]