Solveeit Logo

Question

Question: If \(x = a(\cos\theta + \theta\sin\theta)\), \(y = a(\sin\theta - \theta\cos\theta),\frac{dy}{dx} =\...

If x=a(cosθ+θsinθ)x = a(\cos\theta + \theta\sin\theta), y=a(sinθθcosθ),dydx=y = a(\sin\theta - \theta\cos\theta),\frac{dy}{dx} =

A

cosθ\cos\theta

B

tanθ\tan\theta

C

secθ\sec\theta

D

cosecθ

Answer

tanθ\tan\theta

Explanation

Solution

dydx=dy/dθdx/dθ\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}=a[cosθθ(sinθ)cosθ]a[sinθ+θcosθ+sinθ]=θsinθθcosθ=tanθ\frac{a\lbrack\cos\theta - \theta( - \sin\theta) - \cos\theta\rbrack}{a\lbrack - \sin\theta + \theta\cos\theta + \sin\theta\rbrack} = \frac{\theta\sin\theta}{\theta\cos\theta} = \tan\theta.