Solveeit Logo

Question

Question: If $x = a(1-cost)$, $y = a(t + sint)$, then match each entry in List-I to the correct entries in Lis...

If x=a(1cost)x = a(1-cost), y=a(t+sint)y = a(t + sint), then match each entry in List-I to the correct entries in List-II.

List-IList-II
(P)dydx\frac{dy}{dx}(1)tant2tan \frac{t}{2}
(Q)d2ydx2\frac{d^2y}{dx^2}(2)14asec4t2\frac{1}{4a} sec^4 \frac{t}{2}
(R)dxdy\frac{dx}{dy}(3)cott2cot \frac{t}{2}
(S)d2xdy2\frac{d^2x}{dy^2}(4)14a(sect2cosec3t2)\frac{-1}{4a} (sec \frac{t}{2} cosec^3 \frac{t}{2})
(5)sin(t2)sin (\frac{t}{2})
A

(P) \leftrightarrow (3), (Q) \leftrightarrow (4), (R) \leftrightarrow (1), (S) \leftrightarrow (2)

B

(P) \leftrightarrow (1), (Q) \leftrightarrow (2), (R) \leftrightarrow (3), (S) \leftrightarrow (4)

C

(P) \leftrightarrow (3), (Q) \leftrightarrow (1), (R) \leftrightarrow (4), (S) \leftrightarrow (2)

D

(P) \leftrightarrow (4), (Q) \leftrightarrow (3), (R) \leftrightarrow (2), (S) \leftrightarrow (1)

Answer

(P) \leftrightarrow (3), (Q) \leftrightarrow (4), (R) \leftrightarrow (1), (S) \leftrightarrow (2)

Explanation

Solution

Given x=a(1cost)x = a(1-\cos t) and y=a(t+sint)y = a(t+\sin t). We find dxdt=asint\frac{dx}{dt} = a \sin t and dydt=a(1+cost)\frac{dy}{dt} = a(1+\cos t).

(P) dydx=dy/dtdx/dt=a(1+cost)asint=2cos2(t/2)2sin(t/2)cos(t/2)=cot(t/2)\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{a(1+\cos t)}{a \sin t} = \frac{2\cos^2(t/2)}{2\sin(t/2)\cos(t/2)} = \cot(t/2). Matches (3).

(R) dxdy=dx/dtdy/dt=asinta(1+cost)=2sin(t/2)cos(t/2)2cos2(t/2)=tan(t/2)\frac{dx}{dy} = \frac{dx/dt}{dy/dt} = \frac{a \sin t}{a(1+\cos t)} = \frac{2\sin(t/2)\cos(t/2)}{2\cos^2(t/2)} = \tan(t/2). Matches (1).

(Q) d2ydx2=ddx(cot(t/2))=ddt(cot(t/2))dtdx\frac{d^2y}{dx^2} = \frac{d}{dx}(\cot(t/2)) = \frac{d}{dt}(\cot(t/2)) \cdot \frac{dt}{dx}. ddt(cot(t/2))=12csc2(t/2)\frac{d}{dt}(\cot(t/2)) = -\frac{1}{2}\csc^2(t/2). dtdx=1asint=12asin(t/2)cos(t/2)\frac{dt}{dx} = \frac{1}{a \sin t} = \frac{1}{2a\sin(t/2)\cos(t/2)}. So, d2ydx2=12csc2(t/2)12asin(t/2)cos(t/2)=14asin3(t/2)cos(t/2)=14acsc3(t/2)sec(t/2)\frac{d^2y}{dx^2} = -\frac{1}{2}\csc^2(t/2) \cdot \frac{1}{2a\sin(t/2)\cos(t/2)} = -\frac{1}{4a\sin^3(t/2)\cos(t/2)} = -\frac{1}{4a}\csc^3(t/2)\sec(t/2). Matches (4).

(S) d2xdy2=ddy(tan(t/2))=ddt(tan(t/2))dtdy\frac{d^2x}{dy^2} = \frac{d}{dy}(\tan(t/2)) = \frac{d}{dt}(\tan(t/2)) \cdot \frac{dt}{dy}. ddt(tan(t/2))=12sec2(t/2)\frac{d}{dt}(\tan(t/2)) = \frac{1}{2}\sec^2(t/2). dtdy=1a(1+cost)=12acos2(t/2)\frac{dt}{dy} = \frac{1}{a(1+\cos t)} = \frac{1}{2a\cos^2(t/2)}. So, d2xdy2=12sec2(t/2)12acos2(t/2)=14acos4(t/2)=14asec4(t/2)\frac{d^2x}{dy^2} = \frac{1}{2}\sec^2(t/2) \cdot \frac{1}{2a\cos^2(t/2)} = \frac{1}{4a\cos^4(t/2)} = \frac{1}{4a}\sec^4(t/2). Matches (2).

Matches: (P)-(3), (Q)-(4), (R)-(1), (S)-(2).