Solveeit Logo

Question

Question: If x > a, then \[\int{\dfrac{dx}{{{x}^{2}}-{{a}^{2}}}}=\]?...

If x > a, then dxx2a2=\int{\dfrac{dx}{{{x}^{2}}-{{a}^{2}}}}=?

Explanation

Solution

This type of question is based on the concept of integration. First we have to simplify the given function using the formula x2a2=(x+a)(xa){{x}^{2}}-{{a}^{2}}=\left( x+a \right)\left( x-a \right) in the denominator. Then, we need to multiply the numerator and denominator by 2a. Express the numerator as 2a=(x+a)-(x-a). Use the rule a+bc=ac+bc\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c} to simplify the function further. Then substitute u=x+a and v=x-a. Integrate the functions separately with respect to u and v. substitute back the functions in terms of x to the final answer after integration.

Complete step by step answer:
According to the question, we are asked to find dxx2a2\int{\dfrac{dx}{{{x}^{2}}-{{a}^{2}}}}.
We have been given the function is 1x2a2\dfrac{1}{{{x}^{2}}-{{a}^{2}}}. --------(1)
We know that x2a2=(x+a)(xa){{x}^{2}}-{{a}^{2}}=\left( x+a \right)\left( x-a \right).
Using this formula in the function (1), we get
1x2a2=1(x+a)(xa)\dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{\left( x+a \right)\left( x-a \right)}
Now, let us divide the numerator and denominator by 2a.
1x2a2=2a(x+a)(xa)×2a\Rightarrow \dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{2a}{\left( x+a \right)\left( x-a \right)\times 2a}
We can write the function as 1x2a2=12a×2a(x+a)(xa)\dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{2a}\times \dfrac{2a}{\left( x+a \right)\left( x-a \right)}.
Now, let us add and subtract x in the numerator. We get
1x2a2=12a×2a+xx(x+a)(xa)\dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{2a}\times \dfrac{2a+x-x}{\left( x+a \right)\left( x-a \right)}
1x2a2=12a×a+a+xx(x+a)(xa)\Rightarrow \dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{2a}\times \dfrac{a+a+x-x}{\left( x+a \right)\left( x-a \right)}
On arranging the terms in the numerator, we get
1x2a2=12a×x+ax+a(x+a)(xa)\dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{2a}\times \dfrac{x+a-x+a}{\left( x+a \right)\left( x-a \right)}
Let us take -1 common from the last two terms of the numerator.
1x2a2=12a×x+a(xa)(x+a)(xa)\Rightarrow \dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{2a}\times \dfrac{x+a-\left( x-a \right)}{\left( x+a \right)\left( x-a \right)}
We know that a+bc=ac+bc\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}. Using this rule of division in the above function, we get
1x2a2=12a[x+a(x+a)(xa)xa(x+a)(xa)]\Rightarrow \dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{2a}\left[ \dfrac{x+a}{\left( x+a \right)\left( x-a \right)}-\dfrac{x-a}{\left( x+a \right)\left( x-a \right)} \right]
We find that x+a is common in the first fraction. Cancelling out x+a. We get
1x2a2=12a[1(xa)xa(x+a)(xa)]\dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{2a}\left[ \dfrac{1}{\left( x-a \right)}-\dfrac{x-a}{\left( x+a \right)\left( x-a \right)} \right]
Now, x-a is common in the second fraction of the function. We get
1x2a2=12a[1(xa)1(x+a)]\dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{2a}\left[ \dfrac{1}{\left( x-a \right)}-\dfrac{1}{\left( x+a \right)} \right] --------------(2)
We need to integrate 1x2a2\dfrac{1}{{{x}^{2}}-{{a}^{2}}} with respect to x.
1x2a2dx=12a[1(xa)1(x+a)]dx\Rightarrow \int{\dfrac{1}{{{x}^{2}}-{{a}^{2}}}dx}=\int{\dfrac{1}{2a}\left[ \dfrac{1}{\left( x-a \right)}-\dfrac{1}{\left( x+a \right)} \right]}dx
We find that 12a\dfrac{1}{2a} is a constant.
Therefore, we get
1x2a2dx=12a[1(xa)1(x+a)]dx\int{\dfrac{1}{{{x}^{2}}-{{a}^{2}}}dx}=\dfrac{1}{2a}\int{\left[ \dfrac{1}{\left( x-a \right)}-\dfrac{1}{\left( x+a \right)} \right]}dx
Using the subtraction rule of integration, we get
(uv)dx=udxvdx\int{\left( u-v \right)dx=\int{udx-\int{vdx}}}
We get
1x2a2dx=12a[1(xa)dx1(x+a)dx]\int{\dfrac{1}{{{x}^{2}}-{{a}^{2}}}dx}=\dfrac{1}{2a}\left[ \int{\dfrac{1}{\left( x-a \right)}}dx-\int{\dfrac{1}{\left( x+a \right)}dx} \right] ---------(3)
Let us integrate 1(xa)dx\int{\dfrac{1}{\left( x-a \right)}}dx first.
Let u=x-a
Differentiating u with respect to x, we get
dudx=ddx(xa)\dfrac{du}{dx}=\dfrac{d}{dx}\left( x-a \right)
dudx=dxdxddx(a)\Rightarrow \dfrac{du}{dx}=\dfrac{dx}{dx}-\dfrac{d}{dx}\left( a \right)
We know that dxdx=1\dfrac{dx}{dx}=1 and differentiation of a constant is 0.
Therefore, we get
dudx=1\dfrac{du}{dx}=1
du=dx\therefore du=dx
1(xa)dx=1udu\Rightarrow \int{\dfrac{1}{\left( x-a \right)}}dx=\int{\dfrac{1}{u}}du
We know that 1xdx=logx+c\int{\dfrac{1}{x}}dx=\log x+c. Using this rule of integration, we get
1udu=logu+c1\int{\dfrac{1}{u}}du=\log u+{{c}_{1}}
But we know that u=x-a.
Therefore, 1(xa)dx=log(xa)+c1\int{\dfrac{1}{\left( x-a \right)}}dx=\log \left( x-a \right)+{{c}_{1}}.
Now, consider 1(x+a)dx\int{\dfrac{1}{\left( x+a \right)}}dx.
Let v=x+a
Differentiating v with respect to x, we get
dvdx=ddx(x+a)\dfrac{dv}{dx}=\dfrac{d}{dx}\left( x+a \right)
dvdx=dxdx+ddx(a)\Rightarrow \dfrac{dv}{dx}=\dfrac{dx}{dx}+\dfrac{d}{dx}\left( a \right)
We know that dxdx=1\dfrac{dx}{dx}=1 and differentiation of a constant is 0.
Therefore, we get
dvdx=1\dfrac{dv}{dx}=1
dv=dx\therefore dv=dx
1(x+a)dx=1vdv\Rightarrow \int{\dfrac{1}{\left( x+a \right)}}dx=\int{\dfrac{1}{v}}dv
We know that 1xdx=logx+c\int{\dfrac{1}{x}}dx=\log x+c. Using this rule of integration, we get
1vdv=logv+c2\int{\dfrac{1}{v}}dv=\log v+{{c}_{2}}
But we know that v=x+a.
Therefore, 1(x+a)dx=log(x+a)+c2\int{\dfrac{1}{\left( x+a \right)}}dx=\log \left( x+a \right)+{{c}_{2}}.
Substitute this integration in equation (3).
1x2a2dx=12a[log(xa)+c1log(x+a)c2]\Rightarrow \int{\dfrac{1}{{{x}^{2}}-{{a}^{2}}}dx}=\dfrac{1}{2a}\left[ \log \left( x-a \right)+{{c}_{1}}-\log \left( x+a \right)-{{c}_{2}} \right]
Let us take the constants outside the bracket.
1x2a2dx=12a[log(xa)log(x+a)]+c1c22a\Rightarrow \int{\dfrac{1}{{{x}^{2}}-{{a}^{2}}}dx}=\dfrac{1}{2a}\left[ \log \left( x-a \right)-\log \left( x+a \right) \right]+\dfrac{{{c}_{1}}-{{c}_{2}}}{2a}
Let us consider k=c1c22ak=\dfrac{{{c}_{1}}-{{c}_{2}}}{2a}, where k is a constant.
Therefore, we get
1x2a2dx=12a[log(xa)log(x+a)]+k\int{\dfrac{1}{{{x}^{2}}-{{a}^{2}}}dx}=\dfrac{1}{2a}\left[ \log \left( x-a \right)-\log \left( x+a \right) \right]+k
We know that logalogb=logab\log a-\log b=\log \dfrac{a}{b}.
Using this rule of logarithm in the integration, we get
1x2a2dx=12a[log(xa)(x+a)]+k\int{\dfrac{1}{{{x}^{2}}-{{a}^{2}}}dx}=\dfrac{1}{2a}\left[ \log \dfrac{\left( x-a \right)}{\left( x+a \right)} \right]+k
1x2a2dx=12alog(xa)(x+a)+k\therefore \int{\dfrac{1}{{{x}^{2}}-{{a}^{2}}}dx}=\dfrac{1}{2a}\log \dfrac{\left( x-a \right)}{\left( x+a \right)}+k
Therefore, the integration of 1x2a2\dfrac{1}{{{x}^{2}}-{{a}^{2}}} with respect to x is 12alog(xa)(x+a)+k\dfrac{1}{2a}\log \dfrac{\left( x-a \right)}{\left( x+a \right)}+k.

Note:
Whenever we get this type of question, we have to simplify the given function to a simplified form for easy integration. We have to know that integration of 1x\dfrac{1}{x} is log x. Also be thorough with the rules and properties of logarithm. Avoid calculation mistakes based on sign convention.