Solveeit Logo

Question

Question: If \(x=a\sin \theta +b\cos \theta ,y=a\cos \theta -b\sin \theta \) then show that \({{\left( ax+by \...

If x=asinθ+bcosθ,y=acosθbsinθx=a\sin \theta +b\cos \theta ,y=a\cos \theta -b\sin \theta then show that (ax+by)2+(bxay)2=(a2+b2)2{{\left( ax+by \right)}^{2}}+{{\left( bx-ay \right)}^{2}}={{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}.

Explanation

Solution

Hint:Multiply expression of x and y with a and b. Thus, get the expression for ax, ay, bx, by. Then substitute to the values in the LHS of the expression. Apply basic identities and simplify it.

Complete step-by-step answer:
We have been given an expression of x and y. we need to show that (ax+by)2+(bxay)2=(a2+b2)2{{\left( ax+by \right)}^{2}}+{{\left( bx-ay \right)}^{2}}={{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}
Given, x=asinθ+bcosθx=a\sin \theta +b\cos \theta ………….. (i)
y=acosθbsinθy=a\cos \theta -b\sin \theta ……………(ii)
Now multiply equation (i) with a and b and form (ii) expressions. Similarly multiply equation (ii) with a and b and form (ii) expression
Equation (i) x=asinθ+bcosθx=a\sin \theta +b\cos \theta
Multiply by a,
ax=a(sinθ+bcosθ)ax=a\left( \sin \theta +b\cos \theta \right)
ax=a2sinθ+abcosθax={{a}^{2}}\sin \theta +ab\cos \theta
Multiply by b,
bx=b(asinθ+bcosθ) bx=absinθ+b2cosθ \begin{aligned} & bx=b\left( a\sin \theta +b\cos \theta \right) \\\ & bx=ab\sin \theta +{{b}^{2}}\cos \theta \\\ \end{aligned}
Similarly, on equation (ii) y=acosθbsinθy=a\cos \theta -b\sin \theta
Multiply by a,
ay=a2cosθabsinθay={{a}^{2}}\cos \theta -ab\sin \theta
Multiply by b,
by=abcosθb2sinθby=ab\cos \theta -{{b}^{2}}\sin \theta
These we have 4 expressions
ax=a2sinθ+abcosθ bx=absinθ+b2cosθ ay=a2cosθabsinθ by=abcosθb2sinθ \begin{aligned} & ax={{a}^{2}}\sin \theta +ab\cos \theta \\\ & bx=ab\sin \theta +{{b}^{2}}\cos \theta \\\ & ay={{a}^{2}}\cos \theta -ab\sin \theta \\\ & by=ab\cos \theta -{{b}^{2}}\sin \theta \\\ \end{aligned}
Now let us find the value of
ax+by=(a2sinθ+abcosθ)+(abcosθb2sinθ)=a2sinθb2sinθ+2abcosθax+by=\left( {{a}^{2}}\sin \theta +ab\cos \theta \right)+\left( ab\cos \theta -{{b}^{2}}\sin \theta \right)={{a}^{2}}\sin \theta -{{b}^{2}}\sin \theta +2ab\cos \theta
Similarly,
bxay=(absinθ+b2cosθ)(a2cosθabsinθ) =absinθ+b2cosθa2cosθ+absinθ =b2cosθa2cosθ+2absinθ \begin{aligned} & bx-ay=\left( ab\sin \theta +{{b}^{2}}\cos \theta \right)-\left( {{a}^{2}}\cos \theta -ab\sin \theta \right) \\\ & =ab\sin \theta +{{b}^{2}}\cos \theta -{{a}^{2}}\cos \theta +ab\sin \theta \\\ & ={{b}^{2}}\cos \theta -{{a}^{2}}\cos \theta +2ab\sin \theta \\\ \end{aligned}
We have been asked to prove that,
(ax+by)2+(bxay)2=(a2+b2)2{{\left( ax+by \right)}^{2}}+{{\left( bx-ay \right)}^{2}}={{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}
Consider the LHS of expression,
LHS=(ax+by)2+(bxay)2LHS={{\left( ax+by \right)}^{2}}+{{\left( bx-ay \right)}^{2}}
Now let us substitute the values of (ax + by), (by – ay)
LHS=(ax+by)2+(bxay)2LHS={{\left( ax+by \right)}^{2}}+{{\left( bx-ay \right)}^{2}}
LHS=(a2sinθb2sinθ+2abcosθ)2+(b2cosθa2cosθ+2absinθ)2LHS={{\left( {{a}^{2}}\sin \theta -{{b}^{2}}\sin \theta +2ab\cos \theta \right)}^{2}}+{{\left( {{b}^{2}}\cos \theta -{{a}^{2}}\cos \theta +2absin\theta \right)}^{2}} ………… (iii)
We know the basic identity, (x+y+z)2=x2+y2+z2+2xy+2yz+2zx{{\left( x+y+z \right)}^{2}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx.
Similarly,
(a2sinθ+(b2sinθ)+2abcosθ)2 =(a2sinθ)2+(b2sinθ)2+(2abcosθ)2+2[(a2sinθ)(b2sinθ)] +2[(b2sinθ)(2abcosθ)]+2[(2abcosθ)(a2sinθ)] \begin{aligned} & {{\left( {{a}^{2}}\sin \theta +\left( -{{b}^{2}}\sin \theta \right)+2ab\cos \theta \right)}^{2}} \\\ & ={{\left( {{a}^{2}}\sin \theta \right)}^{2}}+{{\left( -{{b}^{2}}\sin \theta \right)}^{2}}+{{\left( 2ab\cos \theta \right)}^{2}}+2\left[ \left( {{a}^{2}}\sin \theta \right)\left( -{{b}^{2}}\sin \theta \right) \right] \\\ & +2\left[ \left( -{{b}^{2}}\sin \theta \right)\left( 2ab\cos \theta \right) \right]+2\left[ \left( 2ab\cos \theta \right)\left( {{a}^{2}}\sin \theta \right) \right] \\\ \end{aligned}
a4sin2θ+b4sin2θ+4a2b2cos2θ2a2b2sin2θ4ab3sinθcosθ+4a3bsinθcosθ{{a}^{4}}{{\sin }^{2}}\theta +{{b}^{4}}{{\sin }^{2}}\theta +4{{a}^{2}}{{b}^{2}}{{\cos }^{2}}\theta -2{{a}^{2}}{{b}^{2}}{{\sin }^{2}}\theta -4a{{b}^{3}}\sin \theta \cos \theta +4{{a}^{3}}b\sin \theta \cos \theta ……(iv)
Similarly,
(b2cosθ+(a2cosθ)+2absinθ)2 =(b2cosθ)2+(a2cosθ)2+(2absinθ)2+[2(b2cosθ)(a2cosθ)] +[2(a2cosθ)(2absinθ)]+[2(+b2cosθ)(2absinθ)] \begin{aligned} & {{\left( {{b}^{2}}cos\theta +\left( -{{a}^{2}}cos\theta \right)+2absin\theta \right)}^{2}} \\\ & ={{\left( {{b}^{2}}\cos \theta \right)}^{2}}+{{\left( -{{a}^{2}}\cos \theta \right)}^{2}}+{{\left( 2absin\theta \right)}^{2}}+\left[ 2\left( {{b}^{2}}\cos \theta \right)\left( -{{a}^{2}}\cos \theta \right) \right] \\\ & +\left[ 2\left( -{{a}^{2}}\cos \theta \right)\left( 2ab\sin \theta \right) \right]+\left[ 2\left( +{{b}^{2}}\cos \theta \right)\left( 2ab\sin \theta \right) \right] \\\ \end{aligned}
=b4cos2θ+a4cos2θ+4a2b2sin2θ2a2b2cos2θ4a3bsinθcosθ+4ab3sinθcosθ={{b}^{4}}{{\cos }^{2}}\theta +{{a}^{4}}{{\cos }^{2}}\theta +4{{a}^{2}}{{b}^{2}}{{\sin }^{2}}\theta -2{{a}^{2}}{{b}^{2}}{{\cos }^{2}}\theta -4{{a}^{3}}b\sin \theta \cos \theta +4a{{b}^{3}}\sin \theta \cos \theta …..(v)
LHS=(a2sinθb2sinθ+2abcosθ)2+(b2cosθa2cosθ+2absinθ)2\therefore LHS={{\left( {{a}^{2}}\sin \theta -{{b}^{2}}\sin \theta +2ab\cos \theta \right)}^{2}}+{{\left( {{b}^{2}}cos\theta -{{a}^{2}}cos\theta +2absin\theta \right)}^{2}}
Now substitute the values of (iv), (v) in equation (iii)
LHS=a4sin2θ+b4sin2θ+4a2b2cos2θ2a2b2sin2θ4ab3sinθcosθ+4a3bsinθcosθ +b4cos2θ+a4cos2θ+4a2b2sin2θ2a2b2cos2θ4a3bsinθcosθ+4ab3sinθcosθ \begin{aligned} & \therefore LHS={{a}^{4}}{{\sin }^{2}}\theta +{{b}^{4}}{{\sin }^{2}}\theta +4{{a}^{2}}{{b}^{2}}{{\cos }^{2}}\theta -2{{a}^{2}}{{b}^{2}}{{\sin }^{2}}\theta -4a{{b}^{3}}\sin \theta \cos \theta +4{{a}^{3}}b\sin \theta \cos \theta \\\ & +{{b}^{4}}{{\cos }^{2}}\theta +{{a}^{4}}{{\cos }^{2}}\theta +4{{a}^{2}}{{b}^{2}}{{\sin }^{2}}\theta -2{{a}^{2}}{{b}^{2}}{{\cos }^{2}}\theta -4{{a}^{3}}b\sin \theta \cos \theta +4a{{b}^{3}}\sin \theta \cos \theta \\\ \end{aligned}
Cancel (4ab3sinθcosθ),(4a3bsinθcosθ)\left( 4a{{b}^{3}}\sin \theta \cos \theta \right),\left( 4{{a}^{3}}b\sin \theta \cos \theta \right) from the above expression. Thus, LHS becomes,
LHS=a4sin2θ+b4sin2θ+4a2b2cos2θ2a2b2sin2θ+b4cos2θ+a4cos2θ+4a2b2sin2θ2a2b2cos2θ\therefore LHS={{a}^{4}}{{\sin }^{2}}\theta +{{b}^{4}}{{\sin }^{2}}\theta +4{{a}^{2}}{{b}^{2}}{{\cos }^{2}}\theta -2{{a}^{2}}{{b}^{2}}{{\sin }^{2}}\theta +{{b}^{4}}{{\cos }^{2}}\theta +{{a}^{4}}{{\cos }^{2}}\theta +4{{a}^{2}}{{b}^{2}}{{\sin }^{2}}\theta -2{{a}^{2}}{{b}^{2}}{{\cos }^{2}}\theta
Now let us pair the terms with respect to (sin2θ+cos2θ)\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)
We know that sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1
LHS=a4(sin2θ+cos2θ)+b4(sin2θ+cos2θ)+4a2b2(sin2θ+cos2θ)2a2b2(sin2θ+cos2θ)\therefore LHS={{a}^{4}}\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)+{{b}^{4}}\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)+4{{a}^{2}}{{b}^{2}}\left( si{{n}^{2}}\theta +{{\cos }^{2}}\theta \right)-2{{a}^{2}}{{b}^{2}}\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)
=(a4×1)+(b4×1)+(4a2b2×1)(2a2b2×1) =a4+b4+4a2b22a2b2 =a4+b4+2a2b2 =(a2)2+(b2)2+2(a)2(b)2 \begin{aligned} & =\left( {{a}^{4}}\times 1 \right)+\left( {{b}^{4}}\times 1 \right)+\left( 4{{a}^{2}}{{b}^{2}}\times 1 \right)-\left( 2{{a}^{2}}{{b}^{2}}\times 1 \right) \\\ & ={{a}^{4}}+{{b}^{4}}+4{{a}^{2}}{{b}^{2}}-2{{a}^{2}}{{b}^{2}} \\\ & ={{a}^{4}}+{{b}^{4}}+2{{a}^{2}}{{b}^{2}} \\\ & ={{\left( {{a}^{2}} \right)}^{2}}+{{\left( {{b}^{2}} \right)}^{2}}+2{{\left( a \right)}^{2}}{{\left( b \right)}^{2}} \\\ \end{aligned}
[(a+b)2=a2+b2+2ab]\left[ \because {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \right]
LHS=(a2+b2)2LHS={{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}
Thus, we got LHS = RHS = (a2+b2)2{{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}
Hence, we proved that,
(ax+by)2+(bxay)2=(a2+b2)2{{\left( ax+by \right)}^{2}}+{{\left( bx-ay \right)}^{2}}={{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}
\therefore LHS = RHS

Note: We need basic trigonometric and algebraic identities, which should be remembered for solving these types of questions.Multiplying the expressions of x and y with a and b we get values of ax,ab,bx and by. Substituting in the L.H.S and simplifying it we get the required answer.The important algebraic formula (x+y+z)2=x2+y2+z2+2xy+2yz+2zx{{\left( x+y+z \right)}^{2}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx is used for simplification.