Question
Question: If \(x=a\sin \theta +b\cos \theta ,y=a\cos \theta -b\sin \theta \) then show that \({{\left( ax+by \...
If x=asinθ+bcosθ,y=acosθ−bsinθ then show that (ax+by)2+(bx−ay)2=(a2+b2)2.
Solution
Hint:Multiply expression of x and y with a and b. Thus, get the expression for ax, ay, bx, by. Then substitute to the values in the LHS of the expression. Apply basic identities and simplify it.
Complete step-by-step answer:
We have been given an expression of x and y. we need to show that (ax+by)2+(bx−ay)2=(a2+b2)2
Given, x=asinθ+bcosθ ………….. (i)
y=acosθ−bsinθ……………(ii)
Now multiply equation (i) with a and b and form (ii) expressions. Similarly multiply equation (ii) with a and b and form (ii) expression
Equation (i) x=asinθ+bcosθ
Multiply by a,
ax=a(sinθ+bcosθ)
ax=a2sinθ+abcosθ
Multiply by b,
bx=b(asinθ+bcosθ)bx=absinθ+b2cosθ
Similarly, on equation (ii) y=acosθ−bsinθ
Multiply by a,
ay=a2cosθ−absinθ
Multiply by b,
by=abcosθ−b2sinθ
These we have 4 expressions
ax=a2sinθ+abcosθbx=absinθ+b2cosθay=a2cosθ−absinθby=abcosθ−b2sinθ
Now let us find the value of
ax+by=(a2sinθ+abcosθ)+(abcosθ−b2sinθ)=a2sinθ−b2sinθ+2abcosθ
Similarly,
bx−ay=(absinθ+b2cosθ)−(a2cosθ−absinθ)=absinθ+b2cosθ−a2cosθ+absinθ=b2cosθ−a2cosθ+2absinθ
We have been asked to prove that,
(ax+by)2+(bx−ay)2=(a2+b2)2
Consider the LHS of expression,
LHS=(ax+by)2+(bx−ay)2
Now let us substitute the values of (ax + by), (by – ay)
LHS=(ax+by)2+(bx−ay)2
LHS=(a2sinθ−b2sinθ+2abcosθ)2+(b2cosθ−a2cosθ+2absinθ)2 ………… (iii)
We know the basic identity, (x+y+z)2=x2+y2+z2+2xy+2yz+2zx.
Similarly,
(a2sinθ+(−b2sinθ)+2abcosθ)2=(a2sinθ)2+(−b2sinθ)2+(2abcosθ)2+2[(a2sinθ)(−b2sinθ)]+2[(−b2sinθ)(2abcosθ)]+2[(2abcosθ)(a2sinθ)]
a4sin2θ+b4sin2θ+4a2b2cos2θ−2a2b2sin2θ−4ab3sinθcosθ+4a3bsinθcosθ……(iv)
Similarly,
(b2cosθ+(−a2cosθ)+2absinθ)2=(b2cosθ)2+(−a2cosθ)2+(2absinθ)2+[2(b2cosθ)(−a2cosθ)]+[2(−a2cosθ)(2absinθ)]+[2(+b2cosθ)(2absinθ)]
=b4cos2θ+a4cos2θ+4a2b2sin2θ−2a2b2cos2θ−4a3bsinθcosθ+4ab3sinθcosθ …..(v)
∴LHS=(a2sinθ−b2sinθ+2abcosθ)2+(b2cosθ−a2cosθ+2absinθ)2
Now substitute the values of (iv), (v) in equation (iii)
∴LHS=a4sin2θ+b4sin2θ+4a2b2cos2θ−2a2b2sin2θ−4ab3sinθcosθ+4a3bsinθcosθ+b4cos2θ+a4cos2θ+4a2b2sin2θ−2a2b2cos2θ−4a3bsinθcosθ+4ab3sinθcosθ
Cancel (4ab3sinθcosθ),(4a3bsinθcosθ) from the above expression. Thus, LHS becomes,
∴LHS=a4sin2θ+b4sin2θ+4a2b2cos2θ−2a2b2sin2θ+b4cos2θ+a4cos2θ+4a2b2sin2θ−2a2b2cos2θ
Now let us pair the terms with respect to (sin2θ+cos2θ)
We know that sin2θ+cos2θ=1
∴LHS=a4(sin2θ+cos2θ)+b4(sin2θ+cos2θ)+4a2b2(sin2θ+cos2θ)−2a2b2(sin2θ+cos2θ)
=(a4×1)+(b4×1)+(4a2b2×1)−(2a2b2×1)=a4+b4+4a2b2−2a2b2=a4+b4+2a2b2=(a2)2+(b2)2+2(a)2(b)2
[∵(a+b)2=a2+b2+2ab]
LHS=(a2+b2)2
Thus, we got LHS = RHS = (a2+b2)2
Hence, we proved that,
(ax+by)2+(bx−ay)2=(a2+b2)2
∴ LHS = RHS
Note: We need basic trigonometric and algebraic identities, which should be remembered for solving these types of questions.Multiplying the expressions of x and y with a and b we get values of ax,ab,bx and by. Substituting in the L.H.S and simplifying it we get the required answer.The important algebraic formula (x+y+z)2=x2+y2+z2+2xy+2yz+2zx is used for simplification.