Solveeit Logo

Question

Question: If \[x = a{\sin ^3}\theta \] and \[y = a{\cos ^3}\theta \], then find the value of \[\dfrac{{dy}}{{d...

If x=asin3θx = a{\sin ^3}\theta and y=acos3θy = a{\cos ^3}\theta , then find the value of dydx\dfrac{{dy}}{{dx}}.

Explanation

Solution

Hint: First find the value of dxdθ\dfrac{{dx}}{{d\theta }} and dydθ\dfrac{{dy}}{{d\theta }}, then divide them to get dydx\dfrac{{dy}}{{dx}}. Simplify the answer to express it in terms of x and y.

Complete step-by-step answer:

Let us start solving by finding the expression for dxdθ\dfrac{{dx}}{{d\theta }}.
dxdθ=ddθ(asin3θ)\dfrac{{dx}}{{d\theta }} = \dfrac{d}{{d\theta }}(a{\sin ^3}\theta )
We can use ddx(ax3)=3ax2\dfrac{d}{{dx}}(a{x^3}) = 3a{x^2} to simplify the equation.
dxdθ=3asin2θddθ(sinθ)\dfrac{{dx}}{{d\theta }} = 3a{\sin ^2}\theta \dfrac{d}{{d\theta }}(\sin \theta )
We know that ddx(sinx)=cosx\dfrac{d}{{dx}}(\sin x) = \cos x, hence, we have the following:
dxdθ=3asin2θcosθ.............(1)\dfrac{{dx}}{{d\theta }} = 3a{\sin ^2}\theta \cos \theta .............(1)
Now, let us find the expression for dydθ\dfrac{{dy}}{{d\theta }}.
dydθ=ddθ(acos3θ)\dfrac{{dy}}{{d\theta }} = \dfrac{d}{{d\theta }}(a{\cos ^3}\theta )
We can use ddx(ax3)=3ax2\dfrac{d}{{dx}}(a{x^3}) = 3a{x^2} to simplify the equation.
dxdθ=3acos2θddθ(cosθ)\dfrac{{dx}}{{d\theta }} = 3a{\cos ^2}\theta \dfrac{d}{{d\theta }}(\cos \theta )
We know that ddx(cosx)=sinx\dfrac{d}{{dx}}(\cos x) = - \sin x, hence, we have the following:
dxdθ=3acos2θsinθ............(2)\dfrac{{dx}}{{d\theta }} = - 3a{\cos ^2}\theta \sin \theta ............(2)
We know that,
dydx=dydθdxdθ...........(3)\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}}...........(3)
Using equation (1) and equation (2) in equation (3), we have:

dydx=3asin2θcosθ3acos2θsinθ\dfrac{{dy}}{{dx}} = \dfrac{{3a{{\sin }^2}\theta \cos \theta }}{{ - 3a{{\cos }^2}\theta \sin \theta }}
Cancelling common terms in the numerator and the denominator we have:
dydx=sinθcosθ\dfrac{{dy}}{{dx}} = - \dfrac{{\sin \theta }}{{\cos \theta }}
We know that sinθcosθ=tanθ\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta , hence we have:
dydx=tanθ..........(4)\dfrac{{dy}}{{dx}} = - \tan \theta ..........(4)
We can write equation (4) in terms of x and y.
Let us find the value of xy\dfrac{x}{y}.
xy=asin3θacos3θ\dfrac{x}{y} = \dfrac{{a{{\sin }^3}\theta }}{{a{{\cos }^3}\theta }}
Simplifying, we get:
xy=sin3θcos3θ\dfrac{x}{y} = \dfrac{{{{\sin }^3}\theta }}{{{{\cos }^3}\theta }}
xy=tan3θ\dfrac{x}{y} = {\tan ^3}\theta
Let us compute tanθ\tan \theta in terms of x and y by taking the cube root on both sides.
tanθ=xy3.........(5)\tan \theta = \sqrt[3]{{\dfrac{x}{y}}}.........(5)
Substituting equation (5) in equation (4), we get:
dydx=xy3\dfrac{{dy}}{{dx}} = - \sqrt[3]{{\dfrac{x}{y}}}
Hence, the answer is xy3 - \sqrt[3]{{\dfrac{x}{y}}}.

Note: If you express the final answer in terms of θ\theta , it is a wrong answer. Express the final answer in terms of x and y only.